Suppr超能文献

酿酒酵母Fet3p和漆树漆酶中受扰T1铜位点的光谱研究:T1与三核铜位点之间的变构偶联

Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: allosteric coupling between the T1 and trinuclear Cu sites.

作者信息

Augustine Anthony J, Kragh Mads Emil, Sarangi Ritimukta, Fujii Satoshi, Liboiron Barry D, Stoj Christopher S, Kosman Daniel J, Hodgson Keith O, Hedman Britt, Solomon Edward I

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305, USA.

出版信息

Biochemistry. 2008 Feb 19;47(7):2036-45. doi: 10.1021/bi7020052. Epub 2008 Jan 16.

Abstract

The multicopper oxidases catalyze the 4e- reduction of O2 to H2O coupled to the 1e- oxidation of 4 equiv of substrate. This activity requires four Cu atoms, including T1, T2, and coupled binuclear T3 sites. The T2 and T3 sites form a trinuclear cluster (TNC) where O2 is reduced. The T1 is coupled to the TNC through a T1-Cys-His-T3 electron transfer (ET) pathway. In this study the two T3 Cu coordinating His residues which lie in this pathway in Fet3 have been mutated, H483Q, H483C, H485Q, and H485C, to study how perturbation at the TNC impacts the T1 Cu site. Spectroscopic methods, in particular resonance Raman (rR), show that the change from His to Gln to Cys increases the covalency of the T1 Cu-S Cys bond and decreases its redox potential. This study of T1-TNC interactions is then extended to Rhus vernicifera laccase where a number of well-defined species including the catalytically relevant native intermediate (NI) can be trapped for spectroscopic study. The T1 Cu-S covalency and potential do not change in these species relative to resting oxidized enzyme, but interestingly the differences in the structure of the TNC in these species do lead to changes in the T1 Cu rR spectrum. This helps to confirm that vibrations in the cysteine side chain of the T1 Cu site and the protein backbone couple to the Cu-S vibration. These changes in the side chain and backbone provide a possible mechanism for regulating intramolecular T1 to TNC ET in NI and partially reduced enzyme forms for efficient turnover.

摘要

多铜氧化酶催化将O₂经4电子还原为H₂O,并耦合4当量底物的1电子氧化。该活性需要四个铜原子,包括T1、T2和耦合的双核T3位点。T2和T3位点形成一个三核簇(TNC),O₂在其中被还原。T1通过T1-半胱氨酸-组氨酸-T3电子转移(ET)途径与TNC耦合。在本研究中,Fet3中位于该途径的两个T3铜配位组氨酸残基H483Q、H483C、H485Q和H485C被突变,以研究TNC处的扰动如何影响T1铜位点。光谱方法,特别是共振拉曼(rR)光谱显示,从组氨酸到谷氨酰胺再到半胱氨酸的变化增加了T1 Cu-S半胱氨酸键的共价性并降低了其氧化还原电位。然后,将对T1-TNC相互作用的研究扩展到漆树漆酶,在那里可以捕获包括催化相关天然中间体(NI)在内的许多明确的物种用于光谱研究。相对于静止的氧化酶,这些物种中T1 Cu-S的共价性和电位没有变化,但有趣的是,这些物种中TNC结构的差异确实导致了T1 Cu rR光谱的变化。这有助于证实T1铜位点的半胱氨酸侧链和蛋白质主链中的振动与Cu-S振动耦合。侧链和主链的这些变化为调节NI和部分还原酶形式中分子内T1到TNC的电子转移以实现高效周转提供了一种可能的机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验