Suppr超能文献

寻找记忆、数独、隐式校验位以及对并非总是正确的快速神经计算的迭代使用。

Searching for memories, Sudoku, implicit check bits, and the iterative use of not-always-correct rapid neural computation.

作者信息

Hopfield J J

机构信息

Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA.

出版信息

Neural Comput. 2008 May;20(5):1119-64. doi: 10.1162/neco.2007.09-06-345.

Abstract

The algorithms that simple feedback neural circuits representing a brain area can rapidly carry out are often adequate to solve easy problems but for more difficult problems can return incorrect answers. A new excitatory-inhibitory circuit model of associative memory displays the common human problem of failing to rapidly find a memory when only a small clue is present. The memory model and a related computational network for solving Sudoku puzzles produce answers that contain implicit check bits in the representation of information across neurons, allowing a rapid evaluation of whether the putative answer is correct or incorrect through a computation related to visual pop-out. This fact may account for our strong psychological feeling of right or wrong when we retrieve a nominal memory from a minimal clue. This information allows more difficult computations or memory retrievals to be done in a serial fashion by using the fast but limited capabilities of a computational module multiple times. The mathematics of the excitatory-inhibitory circuits for associative memory and for Sudoku, both of which are understood in terms of energy or Lyapunov functions, is described in detail.

摘要

代表大脑区域的简单反馈神经回路能够快速执行的算法,通常足以解决简单问题,但对于更困难的问题可能会给出错误答案。一种新的联想记忆兴奋性 - 抑制性电路模型显示了人类常见的问题:当只有一个小线索时,无法快速找到记忆。该记忆模型和一个用于解决数独谜题的相关计算网络产生的答案,在跨神经元的信息表示中包含隐式校验位,从而可以通过与视觉突显相关的计算快速评估假定答案是否正确。这一事实可能解释了我们在从最小线索中检索名义记忆时强烈的对错心理感受。这些信息允许通过多次使用计算模块快速但有限的能力,以串行方式完成更困难的计算或记忆检索。详细描述了用于联想记忆和数独的兴奋性 - 抑制性电路的数学,这两者都可以用能量或李雅普诺夫函数来理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验