Ovaskainen Otso
Department of Biological and Environmental Sciences, PO Box 65, Viikinkaari 1, FI-00014 University of Helsinki, Finland.
Theor Popul Biol. 2008 Mar;73(2):198-211. doi: 10.1016/j.tpb.2007.11.002. Epub 2007 Nov 24.
I present a general diffusion-based modeling framework for the analysis of animal movements in heterogeneous landscapes, including terms representing advection, mortality, and edge-mediated behavior. I use adjoint operator theory to develop mathematical machinery for the assessment of a number of biologically relevant quantities, such as occupancy times, hitting probabilities, quasi-stationary distributions, the backwards equation, and conditional probability densities. I derive finite-element approximations, which can be used to obtain numerical solutions in domains which do not allow for an analytical treatment. As an example, I model the movements of the butterfly Melitaea cinxia in an island consisting of a set of habitat patches and the intervening matrix habitat. I illustrate the behavior of the model and the mathematical theory by examining the effects of a hypothetical movement barrier and advection caused by prevailing wind conditions.
我提出了一个基于扩散的通用建模框架,用于分析异质景观中的动物运动,其中包括表示平流、死亡率和边缘介导行为的项。我运用伴随算子理论来开发数学工具,以评估一些生物学相关量,如占据时间、击中概率、准平稳分布、反向方程和条件概率密度。我推导了有限元近似,可用于在无法进行解析处理的区域获得数值解。作为一个例子,我对蝴蝶Melitaea cinxia在一个由一组栖息地斑块和中间基质栖息地组成的岛屿中的运动进行建模。我通过研究假设的运动障碍和盛行风条件引起的平流的影响,来说明模型的行为和数学理论。