Chen Hui, Moreau Yohann, Derat Etienne, Shaik Sason
Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel.
J Am Chem Soc. 2008 Feb 13;130(6):1953-65. doi: 10.1021/ja076679p. Epub 2008 Jan 18.
Heme degradation by heme oxygenase (HO) enzymes is important in maintaining iron homeostasis and prevention of oxidative stress, etc. In response to mechanistic uncertainties, we performed quantum mechanical/molecular mechanical investigations of the heme hydroxylation by HO, in the native route and with the oxygen surrogate donor H2O2. It is demonstrated that H2O2 cannot be deprotonated to yield Fe(III)OOH, and hence the surrogate reaction starts from the FeHOOH complex. The calculations show that, when starting from either Fe(III)OOH or Fe(III)HOOH, the fully concerted mechanism involving O-O bond breakage and O-C(meso) bond formation is highly disfavored. The low-energy mechanism involves a nonsynchronous, effectively concerted pathway, in which the active species undergoes first O-O bond homolysis followed by a barrier-free (small with Fe(III)HOOH) hydroxyl radical attack on the meso position of the porphyrin. During the reaction of Fe(III)HOOH, formation of the Por+*FeIV=O species, compound I, competes with heme hydroxylation, thereby reducing the efficiency of the surrogate route. All these conclusions are in accord with experimental findings (Chu, G. C.; Katakura, K.; Zhang, X.; Yoshida, T.; Ikeda-Saito, M. J. Biol. Chem. 1999, 274, 21319). The study highlights the role of the water cluster in the distal pocket in creating "function" for the enzyme; this cluster affects the O-O cleavage and the O-Cmeso formation, but more so it is responsible for the orientation of the hydroxyl radical and for the observed alpha-meso regioselectivity of hydroxylation (Ortiz de Montellano, P. R. Acc. Chem. Res. 1998, 31, 543). Differences/similarities with P450 and HRP are discussed.
血红素加氧酶(HO)催化的血红素降解对于维持铁稳态和预防氧化应激等具有重要意义。针对其中的机制不确定性,我们开展了量子力学/分子力学研究,考察了HO在天然途径以及使用氧替代供体H2O2时对血红素的羟基化作用。结果表明,H2O2无法去质子化生成Fe(III)OOH,因此替代反应从FeHOOH配合物开始。计算结果显示,无论从Fe(III)OOH还是Fe(III)HOOH出发,涉及O - O键断裂和O - C(中位)键形成的完全协同机制都极不受青睐。低能量机制涉及一种非同步、有效协同的途径,其中活性物种首先经历O - O键均裂,随后对卟啉中位进行无势垒(Fe(III)HOOH时势垒较小)的羟基自由基攻击。在Fe(III)HOOH反应过程中,Por+*FeIV=O物种(化合物I)的形成与血红素羟基化相互竞争,从而降低了替代途径的效率。所有这些结论均与实验结果相符(Chu, G. C.; Katakura, K.; Zhang, X.; Yoshida, T.; Ikeda - Saito, M. J. Biol. Chem. 1999, 274, 21319)。该研究突出了远端口袋中水分子簇在赋予酶“功能”方面的作用;这个簇影响O - O键断裂和O - C中位键形成,但更重要的是它决定了羟基自由基的取向以及所观察到的α-中位区域选择性羟基化(Ortiz de Montellano, P. R. Acc. Chem. Res. 1998, 31, 543)。文中还讨论了与细胞色素P450和辣根过氧化物酶的差异/相似之处。