Suppr超能文献

大鼠血红素加氧酶-1(HO-1)与血红素结合的亚铁、一氧化碳、氰根离子和一氧化氮结合形式的晶体结构:HO-1中一氧化碳和氧气区分的结构意义

Crystal structures of ferrous and CO-, CN(-)-, and NO-bound forms of rat heme oxygenase-1 (HO-1) in complex with heme: structural implications for discrimination between CO and O2 in HO-1.

作者信息

Sugishima Masakazu, Sakamoto Hiroshi, Noguchi Masato, Fukuyama Keiichi

机构信息

Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.

出版信息

Biochemistry. 2003 Aug 26;42(33):9898-905. doi: 10.1021/bi027268i.

Abstract

Heme oxygenase (HO) catalyzes heme degradation by utilizing O(2) and reducing equivalents to produce biliverdin IX alpha, iron, and CO. To avoid product inhibition, the heme[bond]HO complex (heme[bond]HO) is structured to markedly increase its affinity for O(2) while suppressing its affinity for CO. We determined the crystal structures of rat ferrous heme[bond]HO and heme[bond]HO bound to CO, CN(-), and NO at 2.3, 1.8, 2.0, and 1.7 A resolution, respectively. The heme pocket of ferrous heme-HO has the same conformation as that of the previously determined ferric form, but no ligand is visible on the distal side of the ferrous heme. Fe[bond]CO and Fe[bond]CN(-) are tilted, whereas the Fe[bond]NO is bent. The structure of heme[bond]HO bound to NO is identical to that bound to N(3)(-), which is also bent as in the case of O(2). Notably, in the CO- and CN(-)-bound forms, the heme and its ligands shift toward the alpha-meso carbon, and the distal F-helix shifts in the opposite direction. These shifts allow CO or CN(-) to bind in a tilted fashion without a collision between the distal ligand and Gly139 O and cause disruption of one salt bridge between the heme and basic residue. The structural identity of the ferrous and ferric states of heme[bond]HO indicates that these shifts are not produced on reduction of heme iron. Neither such conformational changes nor a heme shift occurs on NO or N(3)(-) binding. Heme[bond]HO therefore recognizes CO and O(2) by their binding geometries. The marked reduction in the ratio of affinities of CO to O(2) for heme[bond]HO achieved by an increase in O(2) affinity [Migita, C. T., Matera, K. M., Ikeda-Saito, M., Olson, J. S., Fujii, H., Yoshimura, T., Zhou, H., and Yoshida, T. (1998) J. Biol. Chem. 273, 945-949] is explained by hydrogen bonding and polar interactions that are favorable for O(2) binding, as well as by characteristic structural changes in the CO-bound form.

摘要

血红素加氧酶(HO)通过利用氧气和还原当量催化血红素降解,生成胆绿素IXα、铁和一氧化碳。为避免产物抑制,血红素[键合]HO复合物(血红素[键合]HO)的结构使其对氧气的亲和力显著增加,同时抑制其对一氧化碳的亲和力。我们分别以2.3、1.8、2.0和1.7埃的分辨率测定了大鼠亚铁血红素[键合]HO以及与一氧化碳、氰根离子(CN(-))和一氧化氮(NO)结合的血红素[键合]HO的晶体结构。亚铁血红素-HO的血红素口袋与先前测定的高铁形式具有相同的构象,但在亚铁血红素的远端看不到配体。铁[键合]一氧化碳和铁[键合]氰根离子(CN(-))是倾斜的,而铁[键合]一氧化氮是弯曲的。与一氧化氮结合的血红素[键合]HO的结构与与叠氮根离子(N(3)(-))结合的结构相同,叠氮根离子(N(3)(-))也像氧气结合时那样弯曲。值得注意的是,在与一氧化碳和氰根离子(CN(-))结合的形式中,血红素及其配体向α-中位碳移动,而远端的F-螺旋向相反方向移动。这些移动使得一氧化碳或氰根离子(CN(-))能够以倾斜的方式结合,而不会在远端配体和甘氨酸139的氧之间发生碰撞,并导致血红素与碱性残基之间的一个盐桥断裂。血红素[键合]HO亚铁态和高铁态的结构一致性表明,这些移动不是在血红素铁还原时产生的。在一氧化氮或叠氮根离子(N(3)(-))结合时,既没有发生这样的构象变化,也没有血红素移动。因此,血红素[键合]HO通过一氧化碳和氧气的结合几何形状来识别它们。通过增加氧气亲和力实现的血红素[键合]HO对一氧化碳与氧气亲和力之比的显著降低[Migita, C. T., Matera, K. M., Ikeda-Saito, M., Olson, J. S., Fujii, H., Yoshimura, T., Zhou, H., and Yoshida, T. (1998) J. Biol. Chem. 273, 945 - 949],可以通过有利于氧气结合的氢键和极性相互作用以及一氧化碳结合形式中的特征性结构变化来解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验