Onoue Satomi, Igarashi Naoko, Yamauchi Yukinori, Murase Noriaki, Zhou Yu, Kojima Takashi, Yamada Shizuo, Tsuda Yoshiko
Worldwide Pharmaceutical Sciences, Pfizer Global Research and Development (PGRD), Nagoya Laboratories, Pfizer Japan Inc., 5-2 Taketoyo, Aichi 470-2393, Japan.
Eur J Pharm Sci. 2008 Mar 3;33(3):262-70. doi: 10.1016/j.ejps.2007.12.004. Epub 2007 Dec 23.
Some photosensitizing drugs can cause phototoxic skin responses even after systemic administration; therefore, avoidance of undesired side-effects is a key consideration in drug discovery and development. As a prediction tool for phototoxic risk, we previously proposed the monitoring of reactive oxygen species (ROS) generated from compounds irradiated with UVA/B, which can be effective for understanding photochemical/photobiological properties. In this investigation, we evaluated the photosensitizing properties of a novel dihydropyridine derivative, with bradykinin B(2) receptor antagonist activity (compound A) using our ROS assay and several analytical/biochemical techniques. Exposure of compound A, and several dihydropyridine-type calcium channel antagonists to simulated sunlight resulted in the significant production of singlet oxygen, superoxide, or both, which indicates their photosensitive/phototoxic potential. This is consistent with the observation that compound A under UVA/B light exposure caused significant photodegradation and even peroxidation of fatty acid, which could lead to phototoxic dermatitis. Interestingly, the addition of radical scavengers, especially GSH, MPG and BHA, could attenuate the lipid peroxidation, suggesting the involvement of ROS generation in the phototoxic pathways of compound A. In the 3T3 neutral red uptake phototoxicity test, compound A also showed a phototoxic effect on 3T3 mouse fibroblast cells. These findings also support the usefulness of the ROS assay for the risk assessment studies on the drug-induced phototoxicity even at the early stages of pharmaceutical development.
一些光敏药物即使在全身给药后也会引起光毒性皮肤反应;因此,避免不良副作用是药物研发中的关键考虑因素。作为一种光毒性风险预测工具,我们之前提出监测由UVA/B照射的化合物产生的活性氧(ROS),这对于理解光化学/光生物学性质可能是有效的。在本研究中,我们使用我们的ROS检测方法和几种分析/生化技术评估了一种具有缓激肽B(2)受体拮抗剂活性的新型二氢吡啶衍生物(化合物A)的光敏特性。将化合物A和几种二氢吡啶型钙通道拮抗剂暴露于模拟阳光下会导致单线态氧、超氧阴离子或两者的大量产生,这表明它们具有光敏/光毒性潜力。这与观察结果一致,即化合物A在UVA/B光照下会导致脂肪酸显著光降解甚至过氧化,这可能导致光毒性皮炎。有趣的是,添加自由基清除剂,尤其是谷胱甘肽(GSH)、甲氧基聚乙二醇(MPG)和丁基羟基茴香醚(BHA),可以减弱脂质过氧化,表明ROS生成参与了化合物A的光毒性途径。在3T3中性红摄取光毒性试验中,化合物A对3T3小鼠成纤维细胞也表现出光毒性作用。这些发现也支持了ROS检测方法在药物诱导光毒性风险评估研究中的有用性,即使在药物研发的早期阶段也是如此。