Suppr超能文献

使用数学和感知质量指标预测JPEG 2000压缩胸部CT图像中的可感知伪影

Prediction of perceptible artifacts in JPEG 2000-compressed chest CT images using mathematical and perceptual quality metrics.

作者信息

Kim Bohyoung, Lee Kyoung Ho, Kim Kil Joong, Mantiuk Rafal, Hahn Seokyung, Kim Tae Jung, Kim Young Hoon

机构信息

Department of Radiology, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Seoul 463-707, Korea.

出版信息

AJR Am J Roentgenol. 2008 Feb;190(2):328-34. doi: 10.2214/AJR.07.2502.

Abstract

OBJECTIVE

The objective of our study was to determine whether peak signal-to-noise ratio (PSNR) and a perceptual quality metric (High-Dynamic Range Visual Difference Predictor [HDR-VDP]) can predict the presence of perceptible artifacts in Joint Photographic Experts Group (JPEG) 2000-compressed chest CT images.

MATERIALS AND METHODS

One hundred chest CT images were compressed to 5:1, 8:1, 10:1, and 15:1. Five radiologists determined if the original and compressed images were identical (negative response) or different (positive response). The correlation between the results for each metric and the number of readers with positive responses was evaluated using Spearman's rank correlation test. Using the pooled readers' responses as the reference standard, we performed receiver operating characteristic (ROC) analysis to determine the cutoff values balancing sensitivity and specificity and yielding 100% sensitivity in each metric. These cutoff values were then used to estimate the visually lossless thresholds for the compressions for the 100 original images, and the accuracy of the estimates of two metrics was compared (McNemar test).

RESULTS

The correlation coefficients were -0.918 and 0.925 for PSNR and the HDR-VDP, respectively. The areas under the ROC curves for the two metrics were 0.983 and 0.984, respectively (p = 0.11). The PSNR and HDR-VDP accurately predicted the visually lossless threshold for 69% and 72% of the 100 images (p = 0.68), respectively, at the cutoff values balancing sensitivity and specificity and for 43% and 47% (p = 0.22), respectively, at the cutoff values reaching 100% sensitivity.

CONCLUSION

Both metrics are promising in predicting the perceptible compression artifacts and therefore can potentially be used to estimate the visually lossless threshold.

摘要

目的

本研究的目的是确定峰值信噪比(PSNR)和一种感知质量指标(高动态范围视觉差异预测器 [HDR-VDP])是否能够预测联合图像专家组(JPEG)2000 压缩胸部 CT 图像中可察觉伪影的存在。

材料与方法

100 幅胸部 CT 图像被压缩至 5:1、8:1、10:1 和 15:1 的比例。五名放射科医生判断原始图像和压缩图像是否相同(阴性反应)或不同(阳性反应)。使用 Spearman 秩相关检验评估每个指标的结果与给出阳性反应的读者数量之间的相关性。以汇总读者的反应作为参考标准,我们进行了受试者操作特征(ROC)分析,以确定平衡敏感性和特异性并在每个指标中产生 100%敏感性的临界值。然后使用这些临界值来估计 100 幅原始图像压缩后的视觉无损阈值,并比较两种指标估计的准确性(McNemar 检验)。

结果

PSNR 和 HDR-VDP 的相关系数分别为 -0.918 和 0.925。两种指标的 ROC 曲线下面积分别为 0.983 和 0.984(p = 0.11)。在平衡敏感性和特异性的临界值下,PSNR 和 HDR-VDP 分别准确预测了 100 幅图像中 69%和 72%的视觉无损阈值(p = 0.68),在达到 100%敏感性的临界值下,分别为 43%和 47%(p = 0.22)。

结论

两种指标在预测可察觉的压缩伪影方面都很有前景,因此有可能用于估计视觉无损阈值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验