Suppr超能文献

利用 DICOM 头信息预测 JPEG2000 压缩 CT 图像的逼真度。

Predicting the fidelity of JPEG2000 compressed CT images using DICOM header information.

机构信息

Department of Radiation Applied Life Science, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110-744, Korea.

出版信息

Med Phys. 2011 Dec;38(12):6449-57. doi: 10.1118/1.3656963.

Abstract

PURPOSE

To propose multiple logistic regression (MLR) and artificial neural network (ANN) models constructed using digital imaging and communications in medicine (DICOM) header information in predicting the fidelity of Joint Photographic Experts Group (JPEG) 2000 compressed abdomen computed tomography (CT) images.

METHODS

Our institutional review board approved this study and waived informed patient consent. Using a JPEG2000 algorithm, 360 abdomen CT images were compressed reversibly (n = 48, as negative control) or irreversibly (n = 312) to one of different compression ratios (CRs) ranging from 4:1 to 10:1. Five radiologists independently determined whether the original and compressed images were distinguishable or indistinguishable. The 312 irreversibly compressed images were divided randomly into training (n = 156) and testing (n = 156) sets. The MLR and ANN models were constructed regarding the DICOM header information as independent variables and the pooled radiologists' responses as dependent variable. As independent variables, we selected the CR (DICOM tag number: 0028, 2112), effective tube current-time product (0018, 9332), section thickness (0018, 0050), and field of view (0018, 0090) among the DICOM tags. Using the training set, an optimal subset of independent variables was determined by backward stepwise selection in a four-fold cross-validation scheme. The MLR and ANN models were constructed with the determined independent variables using the training set. The models were then evaluated on the testing set by using receiver-operating-characteristic (ROC) analysis regarding the radiologists' pooled responses as the reference standard and by measuring Spearman rank correlation between the model prediction and the number of radiologists who rated the two images as distinguishable.

RESULTS

The CR and section thickness were determined as the optimal independent variables. The areas under the ROC curve for the MLR and ANN predictions were 0.91 (95% CI; 0.86, 0.95) and 0.92 (0.87, 0.96), respectively. The correlation coefficients of the MLR and ANN predictions with the number of radiologists who responded as distinguishable were 0.76 (0.69, 0.82, p < 0.001) and 0.78 (0.71, 0.83, p < 0.001), respectively.

CONCLUSIONS

The MLR and ANN models constructed using the DICOM header information offer promise in predicting the fidelity of JPEG2000 compressed abdomen CT images.

摘要

目的

提出使用医学数字成像和通信(DICOM)头信息构建多元逻辑回归(MLR)和人工神经网络(ANN)模型,以预测 JPEG 2000 压缩腹部 CT 图像的保真度。

方法

我们的机构审查委员会批准了这项研究,并豁免了患者的知情同意。使用 JPEG2000 算法,将 360 个腹部 CT 图像可逆地(n=48,作为阴性对照)或不可逆地(n=312)压缩到 4:1 到 10:1 不同的压缩比(CR)之一。五位放射科医生独立判断原始图像和压缩图像是否可区分或不可区分。312 个不可逆压缩图像随机分为训练集(n=156)和测试集(n=156)。将 MLR 和 ANN 模型构建为 DICOM 头信息作为自变量,将汇总的放射科医生的响应作为因变量。作为自变量,我们选择了 DICOM 标签中的 CR(DICOM 标签号:0028,2112)、有效管电流-时间乘积(0018,9332)、层厚(0018,0050)和视野(0018,0090)。使用训练集,通过四折交叉验证方案中的后向逐步选择确定了最佳的自变量子集。使用训练集构建了具有确定自变量的 MLR 和 ANN 模型。然后,通过使用 ROC 分析将放射科医生的汇总响应作为参考标准,并通过测量模型预测与将两个图像评为可区分的放射科医生数量之间的 Spearman 秩相关来评估模型在测试集上的性能。

结果

CR 和层厚被确定为最佳的独立变量。MLR 和 ANN 预测的 ROC 曲线下面积分别为 0.91(95%置信区间:0.86,0.95)和 0.92(0.87,0.96)。MLR 和 ANN 预测与回答可区分的放射科医生数量的相关系数分别为 0.76(0.69,0.82,p<0.001)和 0.78(0.71,0.83,p<0.001)。

结论

使用 DICOM 头信息构建的 MLR 和 ANN 模型有望预测 JPEG 2000 压缩腹部 CT 图像的保真度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验