Suppr超能文献

计算机断层扫描图像中膈肌的自动描绘

Automatic delineation of the diaphragm in computed tomographic images.

作者信息

Rangayyan Rangaraj M, Vu Randy H, Boag Graham S

机构信息

Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.

出版信息

J Digit Imaging. 2008 Oct;21 Suppl 1(Suppl 1):S134-47. doi: 10.1007/s10278-007-9091-y. Epub 2008 Jan 23.

Abstract

Segmentation of the internal organs in medical images is a difficult task. By incorporating a priori information regarding specific organs of interest, results of segmentation may be improved. Landmarking (i.e., identifying stable structures to aid in gaining more knowledge concerning contiguous structures) is a promising segmentation method. Specifically, segmentation of the diaphragm may help in limiting the scope of segmentation methods to the abdominal cavity; the diaphragm may also serve as a stable landmark for identifying internal organs, such as the liver, the spleen, and the heart. A method to delineate the diaphragm is proposed in the present work. The method is based upon segmentation of the lungs, identification of the lower surface of the lungs as an initial representation of the diaphragm, and the application of least-squares modeling and deformable contour models to obtain the final segmentation of the diaphragm. The proposed procedure was applied to nine X-ray computed tomographic (CT) exams of four pediatric patients with neuroblastoma. The results were evaluated against the boundaries of the diaphragm as identified independently by a radiologist. Good agreement was observed between the results of segmentation and the reference contours drawn by the radiologist, with an average mean distance to the closest point of 5.85 mm over a total of 73 CT slices including the diaphragm.

摘要

医学图像中内部器官的分割是一项艰巨的任务。通过纳入有关特定感兴趣器官的先验信息,分割结果可能会得到改善。地标标记(即识别稳定结构以帮助获取有关相邻结构的更多知识)是一种很有前景的分割方法。具体而言,膈肌的分割可能有助于将分割方法的范围限制在腹腔内;膈肌还可作为识别肝脏、脾脏和心脏等内部器官的稳定地标。本文提出了一种描绘膈肌的方法。该方法基于肺部的分割,将肺的下表面识别为膈肌的初始表示,并应用最小二乘建模和可变形轮廓模型来获得膈肌的最终分割。所提出的程序应用于四名患有神经母细胞瘤的儿科患者的九次X射线计算机断层扫描(CT)检查。将结果与放射科医生独立识别的膈肌边界进行评估。在分割结果与放射科医生绘制的参考轮廓之间观察到良好的一致性,在包括膈肌的总共73个CT切片上,到最近点的平均距离为5.85毫米。

相似文献

1
Automatic delineation of the diaphragm in computed tomographic images.计算机断层扫描图像中膈肌的自动描绘
J Digit Imaging. 2008 Oct;21 Suppl 1(Suppl 1):S134-47. doi: 10.1007/s10278-007-9091-y. Epub 2008 Jan 23.
2
Landmarking and segmentation of computed tomographic images of pediatric patients with neuroblastoma.神经母细胞瘤患儿 CT 图像的定位和分割。
Int J Comput Assist Radiol Surg. 2009 May;4(3):245-62. doi: 10.1007/s11548-009-0289-y. Epub 2009 Feb 26.
9
Supervised probabilistic segmentation of pulmonary nodules in CT scans.CT扫描中肺结节的监督概率分割
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):912-9. doi: 10.1007/11866763_112.
10
Computer-aided kidney segmentation on abdominal CT images.腹部CT图像上的计算机辅助肾脏分割
IEEE Trans Inf Technol Biomed. 2006 Jan;10(1):59-65. doi: 10.1109/titb.2005.855561.

引用本文的文献

1
CT-Based Evaluation of the Shape of the Diaphragm Using 3D Slicer.基于 CT 的 3D Slicer 技术评估膈肌形态。
J Imaging Inform Med. 2024 Aug;37(4):1980-1990. doi: 10.1007/s10278-024-01069-y. Epub 2024 Mar 11.
6
Automatic 3D modelling of human diaphragm from lung MDCT images.从肺部 MDCT 图像自动建立人体横膈膜的 3D 模型。
Int J Comput Assist Radiol Surg. 2016 May;11(5):767-76. doi: 10.1007/s11548-015-1298-7. Epub 2015 Oct 1.
7
Thoracic cavity definition for 3D PET/CT analysis and visualization.用于3D PET/CT分析和可视化的胸腔定义。
Comput Biol Med. 2015 Jul;62:222-38. doi: 10.1016/j.compbiomed.2015.04.018. Epub 2015 Apr 23.
8
Landmarking and segmentation of computed tomographic images of pediatric patients with neuroblastoma.神经母细胞瘤患儿 CT 图像的定位和分割。
Int J Comput Assist Radiol Surg. 2009 May;4(3):245-62. doi: 10.1007/s11548-009-0289-y. Epub 2009 Feb 26.

本文引用的文献

2
Snakes, shapes, and gradient vector flow.蛇形、形状与梯度向量流。
IEEE Trans Image Process. 1998;7(3):359-69. doi: 10.1109/83.661186.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验