Suppr超能文献

用于脑电地形图统计图谱的分组检验邦费罗尼校正

Split-test Bonferroni correction for QEEG statistical maps.

作者信息

Vialatte Francois-Benoit, Cichocki Andrzej

机构信息

RIKEN Brain Science Institute, L.ABSP, 2-6 Hirosawa, Wako-Shi, Saitama-Ken, Japan.

出版信息

Biol Cybern. 2008 Apr;98(4):295-303. doi: 10.1007/s00422-008-0210-8. Epub 2008 Jan 24.

Abstract

With statistical testing, corrections for multiple comparisons, such as Bonferroni adjustments, have given rise to controversies in the scientific community, because of their negative impact on statistical power. This impact is especially problematic for high-multidimensional data, such as multi-electrode brain recordings. With brain imaging data, a reliable method is needed to assess statistical significance of the data without losing statistical power. Conjunction analysis allows the combination of significance and consistency of an effect. Through a balanced combination of information from retest experiments (multiple trials split testing), we present an intuitively appealing, novel approach for brain imaging conjunction. The method is then tested and validated on synthetic data followed by a real-world test on QEEG data from patients with Alzheimer's disease. This latter application requires both reliable type-I error and type-II error rates, because of the poor signal-to-noise ratio inherent in EEG signals.

摘要

在统计检验中,诸如邦费罗尼校正等多重比较校正方法在科学界引发了争议,因为它们会对统计功效产生负面影响。这种影响对于高维数据(如多电极脑电记录)来说尤其成问题。对于脑成像数据,需要一种可靠的方法来评估数据的统计显著性,同时又不损失统计功效。联合分析允许将效应的显著性和一致性结合起来。通过对重测实验(多次试验分割测试)中的信息进行平衡组合,我们提出了一种直观且新颖的脑成像联合分析方法。该方法首先在合成数据上进行测试和验证,随后在来自阿尔茨海默病患者的脑电地形图(QEEG)数据上进行实际测试。由于脑电信号固有的低信噪比,后一种应用需要可靠的I型错误率和II型错误率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验