Gizak Agnieszka, Maciaszczyk Ewa, Dzugaj Andrzej, Eschrich Klaus, Rakus Darek
Department of Animal Physiology, Institute of Zoology, Wroclaw University, Wroclaw, Poland.
Proteins. 2008 Jul;72(1):209-16. doi: 10.1002/prot.21909.
N-terminal residues of muscle fructose 1,6-bisphosphatase (FBPase) are highly conserved among vertebrates. In this article, we present evidence that the conservation is responsible for the unique properties of the muscle FBPase isozyme: high sensitivity to AMP and Ca(2+) inhibition and the high affinity to muscle aldolase, which is a factor desensitizing muscle FBPase toward AMP and Ca(2+). The first N-terminal residue affecting the affinity of muscle FBPase to aldolase is arginine 3. On the other hand, the first residue significantly influencing the kinetics of muscle FBPase is proline 5. Truncation from 5-7 N-terminal residues of the enzyme not only decreases its affinity to aldolase but also reduces its k-(cat) and activation by Mg(2+), and desensitizes FBPase to inhibition by AMP and calcium ions. Deletion of the first 10 amino acids of muscle FBPase abolishes cooperativity of Mg(2+) activation and results in biphasic inhibition of the enzyme by AMP. Moreover, this truncation lowers affinity of muscle FBPase to aldolase about 14 times, making it resemble the liver isozyme. We suggest that the existence of highly AMP-sensitive muscle-like FBPase, activity of which is regulated by metabolite-dependent interaction with aldolase enables the precise regulation of muscle energy expenditures and might contributed to the evolutionary success of vertebrates.
肌肉果糖1,6 - 二磷酸酶(FBPase)的N端残基在脊椎动物中高度保守。在本文中,我们提供证据表明这种保守性导致了肌肉FBPase同工酶的独特性质:对AMP和Ca(2+)抑制高度敏感,以及对肌肉醛缩酶具有高亲和力,而肌肉醛缩酶是使肌肉FBPase对AMP和Ca(2+)脱敏的一个因素。影响肌肉FBPase对醛缩酶亲和力的第一个N端残基是精氨酸3。另一方面,显著影响肌肉FBPase动力学的第一个残基是脯氨酸5。从该酶的N端5 - 7个残基处截断不仅会降低其对醛缩酶的亲和力,还会降低其k-(cat)以及Mg(2+)的激活作用,并使FBPase对AMP和钙离子的抑制作用脱敏。删除肌肉FBPase的前10个氨基酸会消除Mg(2+)激活的协同性,并导致AMP对该酶的双相抑制。此外,这种截断使肌肉FBPase对醛缩酶的亲和力降低约14倍,使其类似于肝脏同工酶。我们认为,存在高度AMP敏感的肌肉样FBPase,其活性通过与醛缩酶的代谢物依赖性相互作用来调节,这使得肌肉能量消耗能够得到精确调节,并且可能有助于脊椎动物在进化上的成功。