Suppr超能文献

葡萄酒发酵过程中酵母转录组的动态变化揭示了一种新的发酵应激反应。

Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response.

作者信息

Marks Virginia D, Ho Sui Shannan J, Erasmus Daniel, van der Merwe George K, Brumm Jochen, Wasserman Wyeth W, Bryan Jennifer, van Vuuren Hennie J J

机构信息

Wine Research Centre, University of British Columbia, Vancouver, Canada.

出版信息

FEMS Yeast Res. 2008 Feb;8(1):35-52. doi: 10.1111/j.1567-1364.2007.00338.x.

Abstract

In this study, genome-wide expression analyses were used to study the response of Saccharomyces cerevisiae to stress throughout a 15-day wine fermentation. Forty per cent of the yeast genome significantly changed expression levels to mediate long-term adaptation to fermenting grape must. Among the genes that changed expression levels, a group of 223 genes was identified, which was designated as fermentation stress response (FSR) genes that were dramatically induced at various points during fermentation. FSR genes sustain high levels of induction up to the final time point and exhibited changes in expression levels ranging from four- to 80-fold. The FSR is novel; 62% of the genes involved have not been implicated in global stress responses and 28% of the FSR genes have no functional annotation. Genes involved in respiratory metabolism and gluconeogenesis were expressed during fermentation despite the presence of high concentrations of glucose. Ethanol, rather than nutrient depletion, seems to be responsible for entry of yeast cells into the stationary phase.

摘要

在本研究中,利用全基因组表达分析来研究酿酒酵母在为期15天的葡萄酒发酵过程中对压力的反应。40%的酵母基因组显著改变表达水平,以介导对发酵葡萄汁的长期适应。在表达水平发生变化的基因中,鉴定出一组223个基因,它们被指定为发酵应激反应(FSR)基因,在发酵过程中的不同时间点被显著诱导。FSR基因在直至最后时间点都维持高水平的诱导,并表现出4至80倍的表达水平变化。FSR是新发现的;62%的相关基因未涉及全局应激反应,28%的FSR基因没有功能注释。尽管存在高浓度葡萄糖,但参与呼吸代谢和糖异生的基因在发酵过程中仍有表达。乙醇而非营养物质耗尽似乎是酵母细胞进入静止期的原因。

相似文献

1
Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response.
FEMS Yeast Res. 2008 Feb;8(1):35-52. doi: 10.1111/j.1567-1364.2007.00338.x.
5
Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation.
Appl Environ Microbiol. 2007 May;73(9):3049-60. doi: 10.1128/AEM.02754-06. Epub 2007 Mar 2.
6
Global gene expression analysis of yeast cells during sake brewing.
Appl Environ Microbiol. 2006 Nov;72(11):7353-8. doi: 10.1128/AEM.01097-06. Epub 2006 Sep 22.
7
Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis.
World J Microbiol Biotechnol. 2017 Nov 3;33(11):206. doi: 10.1007/s11274-017-2376-5.
8
Early transcriptional response to biotic stress in mixed starter fermentations involving Saccharomyces cerevisiae and Torulaspora delbrueckii.
Int J Food Microbiol. 2017 Jan 16;241:60-68. doi: 10.1016/j.ijfoodmicro.2016.10.017. Epub 2016 Oct 13.
9
Use of commercial or indigenous yeast impacts the transcriptome during wine fermentation.
Microbiol Spectr. 2024 Nov 5;12(11):e0119424. doi: 10.1128/spectrum.01194-24. Epub 2024 Sep 17.
10
Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift.
Yeast. 2000 Jan 30;16(2):139-48. doi: 10.1002/(SICI)1097-0061(20000130)16:2<139::AID-YEA512>3.0.CO;2-J.

引用本文的文献

1
Obtaining new brewing yeasts using regional Chilean wine yeasts through an adaptive evolution program.
Front Microbiol. 2025 Jun 16;16:1599904. doi: 10.3389/fmicb.2025.1599904. eCollection 2025.
4
Possible Role for Allelic Variation in Yeast in Ecological Adaptation.
Front Microbiol. 2021 Oct 18;12:741572. doi: 10.3389/fmicb.2021.741572. eCollection 2021.
5
6
Truth in wine yeast.
Microb Biotechnol. 2022 May;15(5):1339-1356. doi: 10.1111/1751-7915.13848. Epub 2021 Jun 26.
9
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition).
Autophagy. 2021 Jan;17(1):1-382. doi: 10.1080/15548627.2020.1797280. Epub 2021 Feb 8.

本文引用的文献

1
Why are there still over 1000 uncharacterized yeast genes?
Genetics. 2007 May;176(1):7-14. doi: 10.1534/genetics.107.074468. Epub 2007 Apr 15.
2
Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution.
J Biol Chem. 2007 Feb 16;282(7):4485-4493. doi: 10.1074/jbc.M606854200. Epub 2006 Dec 18.
5
oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes.
Nucleic Acids Res. 2005 Jun 2;33(10):3154-64. doi: 10.1093/nar/gki624. Print 2005.
8
A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size.
Genes Dev. 2004 Oct 15;18(20):2491-505. doi: 10.1101/gad.1228804. Epub 2004 Oct 1.
9
Bioconductor: open software development for computational biology and bioinformatics.
Genome Biol. 2004;5(10):R80. doi: 10.1186/gb-2004-5-10-r80. Epub 2004 Sep 15.
10
Expression of stress response genes in wine strains with different fermentative behavior.
FEMS Yeast Res. 2004 May;4(7):699-710. doi: 10.1016/j.femsyr.2004.01.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验