Suppr超能文献

信号交叉口驾驶行为的攻击性倾向指数

Aggressiveness propensity index for driving behavior at signalized intersections.

作者信息

Hamdar Samer H, Mahmassani Hani S, Chen Roger B

机构信息

Department of Civil and Environmental Engineering, University of Maryland, 3130 Jeong H. Kim Engineering Building, College Park, MD 20742-3021, United States.

出版信息

Accid Anal Prev. 2008 Jan;40(1):315-26. doi: 10.1016/j.aap.2007.06.013. Epub 2007 Aug 1.

Abstract

The development of a quantitative intersection aggressiveness propensity index (API) is described in this paper. The index is intended to capture the overall propensity for aggressive driving to be experienced at a given signalized intersection. The index is a latent quantity that can be estimated from observed environmental, situational and driving behavior variables using structural equations modeling techniques. An empirical study of 10 major signalized intersections in the greater Washington DC metropolitan area was conducted to illustrate the approach. The API is shown to provide (a) an approach for capturing and quantifying aggressive driving behavior given certain measurements taken at a particular intersection, (b) understanding of the factors and intersection characteristics that may affect aggressiveness, and (c) an index for the cross comparison of different traffic areas with different features. This index has the potential to support safety policy analysis and decision-making.

摘要

本文描述了一种定量交叉路口攻击性倾向指数(API)的开发。该指数旨在捕捉在给定信号控制交叉路口发生攻击性驾驶的总体倾向。该指数是一个潜在量,可以使用结构方程建模技术从观察到的环境、情境和驾驶行为变量中估计出来。对华盛顿特区大都市区的10个主要信号控制交叉路口进行了实证研究,以说明该方法。结果表明,API能够(a)在特定交叉路口进行某些测量的情况下,提供一种捕捉和量化攻击性驾驶行为的方法;(b)了解可能影响攻击性的因素和交叉路口特征;(c)为具有不同特征的不同交通区域进行交叉比较提供一个指数。该指数有可能支持安全政策分析和决策制定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验