Microelectron. Res. Center, Georgia Inst. of Technol., Atlanta, GA.
IEEE Trans Med Imaging. 1995;14(4):758-62. doi: 10.1109/42.476118.
Recent architectural and technological advances have led to the feasibility of a new class of massively parallel processing systems based on a fine-grain, message-passing computational model. These machines provide a new alternative for the development of fast, cost-efficient Maximum Likelihood-Expectation Maximization (ML-EM) algorithmic formulations. As an important first step in determining the potential performance benefits to be gathered from such formulations, we have developed an ML-EM algorithm suitable for the high-communications, low-memory (HCLM) execution model supported by this new class of machines. Evaluation of this algorithm indicates a normalized least-square error comparable to, or better than, that obtained via a sequential ray-driven ML-EM formulation and an effective speedup in execution time (as determined via discrete-event simulation of the Pica multiprocessor system currently under development at the Georgia Institute of Technology) of well over two orders of magnitude compared to current ray-driven sequential ML-EM formulations on high-end workstations. Thus, the HCLM algorithmic formulation may provide ML-EM reconstructions within clinical time-frames.
最近的架构和技术进步使得基于细粒度、消息传递计算模型的新型大规模并行处理系统成为可能。这些机器为快速、经济高效的最大似然-期望最大化(ML-EM)算法公式的开发提供了新的选择。作为确定从这种公式中获得的潜在性能优势的重要第一步,我们已经开发了一种适合这种新型机器支持的高通信、低内存(HCLM)执行模型的 ML-EM 算法。对该算法的评估表明,归一化最小二乘误差可与通过顺序射线驱动 ML-EM 公式获得的误差相媲美,或者更好,并且与当前高端工作站上的基于射线的顺序 ML-EM 公式相比,执行时间的有效加速(通过正在佐治亚理工学院开发的 Pica 多处理器系统的离散事件模拟确定)超过两个数量级。因此,HCLM 算法公式可以在临床时间范围内提供 ML-EM 重建。