Adv. Res. & Appl. Corp., Sunnyvale, CA.
IEEE Trans Med Imaging. 1996;15(5):687-99. doi: 10.1109/42.538946.
The maximum likelihood (ML) approach to estimating the radioactive distribution in the body cross section has become very popular among researchers in emission computed tomography (ECT) since it has been shown to provide very good images compared to those produced with the conventional filtered backprojection (FBP) algorithm. The expectation maximization (EM) algorithm is an often-used iterative approach for maximizing the Poisson likelihood in ECT because of its attractive theoretical and practical properties. Its major disadvantage is that, due to its slow rate of convergence, a large amount of computation is often required to achieve an acceptable image. Here, the authors present a row-action maximum likelihood algorithm (RAMLA) as an alternative to the EM algorithm for maximizing the Poisson likelihood in ECT. The authors deduce the convergence properties of this algorithm and demonstrate by way of computer simulations that the early iterates of RAMLA increase the Poisson likelihood in ECT at an order of magnitude faster that the standard EM algorithm. Specifically, the authors show that, from the point of view of measuring total radionuclide uptake in simulated brain phantoms, iterations 1, 2, 3, and 4 of RAMLA perform at least as well as iterations 45, 60, 70, and 80, respectively, of EM. Moreover, the authors show that iterations 1, 2, 3, and 4 of RAMLA achieve comparable likelihood values as iterations 45, 60, 70, and 80, respectively, of EM. The authors also present a modified version of a recent fast ordered subsets EM (OS-EM) algorithm and show that RAMLA is a special case of this modified OS-EM. Furthermore, the authors show that their modification converges to a ML solution whereas the standard OS-EM does not.
最大似然(ML)方法在放射性分布估计中已经在发射型计算机断层扫描(ECT)的研究人员中变得非常流行,因为与传统的滤波反投影(FBP)算法相比,它提供了非常好的图像。期望最大化(EM)算法是ECT 中常用的迭代方法,用于最大化泊松似然,因为它具有吸引人的理论和实际特性。它的主要缺点是,由于其收敛速度较慢,因此通常需要大量的计算才能获得可接受的图像。在这里,作者提出了一种行操作最大似然算法(RAMLA),作为 EM 算法的替代方法,用于最大化 ECT 中的泊松似然。作者推导了该算法的收敛性质,并通过计算机模拟证明,RAMLA 的早期迭代以比标准 EM 算法快一个数量级的速度增加 ECT 中的泊松似然。具体来说,作者表明,从模拟脑模型中测量总放射性核素摄取的角度来看,RAMLA 的迭代 1、2、3 和 4 的性能至少与 EM 的迭代 45、60、70 和 80 分别相同。此外,作者表明,RAMLA 的迭代 1、2、3 和 4 获得的似然值与 EM 的迭代 45、60、70 和 80 分别相当。作者还提出了最近快速有序子集 EM(OS-EM)算法的修改版本,并表明 RAMLA 是该修改 OS-EM 的特例。此外,作者表明,他们的修改会收敛到最大似然解,而标准 OS-EM 则不会。