Suppr超能文献

测量视觉杂乱度。

Measuring visual clutter.

作者信息

Rosenholtz Ruth, Li Yuanzhen, Nakano Lisa

机构信息

Department of Brain & Cognitive Sciences, MIT, Cambridge, MA 02139, USA.

出版信息

J Vis. 2007 Aug 16;7(2):17.1-22. doi: 10.1167/7.2.17.

Abstract

Visual clutter concerns designers of user interfaces and information visualizations. This should not surprise visual perception researchers because excess and/or disorganized display items can cause crowding, masking, decreased recognition performance due to occlusion, greater difficulty at both segmenting a scene and performing visual search, and so on. Given a reliable measure of the visual clutter in a display, designers could optimize display clutter. Furthermore, a measure of visual clutter could help generalize models like Guided Search (J. M. Wolfe, 1994) by providing a substitute for "set size" more easily computable on more complex and natural imagery. In this article, we present and test several measures of visual clutter, which operate on arbitrary images as input. The first is a new version of the Feature Congestion measure of visual clutter presented in R. Rosenholtz, Y. Li, S. Mansfield, and Z. Jin (2005). This Feature Congestion measure of visual clutter is based on the analogy that the more cluttered a display or scene is, the more difficult it would be to add a new item that would reliably draw attention. A second measure of visual clutter, Subband Entropy, is based on the notion that clutter is related to the visual information in the display. Finally, we test a third measure, Edge Density, used by M. L. Mack and A. Oliva (2004) as a measure of subjective visual complexity. We explore the use of these measures as stand-ins for set size in visual search models and demonstrate that they correlate well with search performance in complex imagery. This includes the search-in-clutter displays of J. M. Wolfe, A. Oliva, T. S. Horowitz, S. Butcher, and A. Bompas (2002) and Bravo and Farid (2004), as well as new search experiments. An additional experiment suggests that color variability, accounted for by Feature Congestion but not the Edge Density measure or the Subband Entropy measure, does matter for visual clutter.

摘要

视觉杂乱困扰着用户界面和信息可视化的设计师。这对于视觉感知研究人员来说并不奇怪,因为过多和/或杂乱无章的显示项目会导致拥挤、掩蔽、由于遮挡导致识别性能下降、在分割场景和执行视觉搜索时难度更大等等。如果能可靠地测量显示器中的视觉杂乱程度,设计师就可以优化显示杂乱情况。此外,视觉杂乱程度的一种测量方法可以通过提供一个在更复杂和自然的图像上更容易计算的“集合大小”替代指标,来帮助推广像引导搜索(J. M. 沃尔夫,1994)这样的模型。在本文中,我们提出并测试了几种视觉杂乱程度的测量方法,这些方法以任意图像作为输入。第一种是R. 罗森霍尔茨、Y. 李、S. 曼斯菲尔德和Z. 金(2005)提出的视觉杂乱特征拥挤测量方法的新版本。这种视觉杂乱特征拥挤测量方法基于这样一种类比,即显示器或场景越杂乱,添加一个能可靠吸引注意力的新项目就越困难。第二种视觉杂乱测量方法,子带熵,基于这样一种观念,即杂乱与显示器中的视觉信息有关。最后,我们测试了第三种测量方法,边缘密度,M. L. 麦克和A. 奥利瓦(2004)曾将其用作主观视觉复杂度的一种测量方法。我们探索将这些测量方法用作视觉搜索模型中集合大小的替代指标,并证明它们与复杂图像中的搜索性能有很好的相关性。这包括J. M. 沃尔夫、A. 奥利瓦、T. S. 霍洛维茨、S. 布彻和A. 邦帕斯(2002)以及布拉沃和法里德(2004)的杂乱场景搜索显示,以及新的搜索实验。另一个实验表明,由特征拥挤而不是边缘密度测量方法或子带熵测量方法所考虑的颜色可变性,对视觉杂乱确实有影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验