Asher Matthew F, Tolhurst David J, Troscianko Tom, Gilchrist Iain D
School of Experimental Psychology, University of Bristol, Bristol, UK.
J Vis. 2013 Apr 25;13(5):25. doi: 10.1167/13.5.25.
Clutter is something that is encountered in everyday life, from a messy desk to a crowded street. Such clutter may interfere with our ability to search for objects in such environments, like our car keys or the person we are trying to meet. A number of computational models of clutter have been proposed and shown to work well for artificial and other simplified scene search tasks. In this paper, we correlate the performance of different models of visual clutter to human performance in a visual search task using natural scenes. The models we evaluate are Feature Congestion (Rosenholtz, Li, & Nakano, 2007), Sub-band Entropy (Rosenholtz et al., 2007), Segmentation (Bravo & Farid, 2008), and Edge Density (Mack & Oliva, 2004) measures. The correlations were performed across a range of target-centered subregions to produce a correlation profile, indicating the scale at which clutter was affecting search performance. Overall clutter was rather weakly correlated with performance (r ≈ 0.2). However, different measures of clutter appear to reflect different aspects of the search task: correlations with Feature Congestion are greatest for the actual target patch, whereas the Sub-band Entropy is most highly correlated in a region 12° × 12° centered on the target.
杂乱是我们在日常生活中会遇到的情况,从凌乱的桌面到拥挤的街道。这种杂乱可能会干扰我们在这类环境中寻找物品的能力,比如我们的汽车钥匙或者我们想要见面的人。已经提出了许多关于杂乱的计算模型,并且这些模型在人工场景和其他简化场景搜索任务中表现良好。在本文中,我们将不同视觉杂乱模型的性能与人类在使用自然场景的视觉搜索任务中的表现进行关联。我们评估的模型有特征拥挤度(罗森霍尔茨、李和中野,2007年)、子带熵(罗森霍尔茨等人,2007年)、分割(布拉沃和法里德,2008年)以及边缘密度(麦克和奥利瓦,2004年)测量方法。在一系列以目标为中心的子区域上进行相关性分析以生成相关性分布图,表明杂乱影响搜索性能的尺度。总体而言,杂乱与性能的相关性较弱(r≈0.2)。然而,不同的杂乱测量方法似乎反映了搜索任务的不同方面:特征拥挤度与实际目标区域的相关性最大,而子带熵在以目标为中心的12°×12°区域内相关性最高。