Suppr超能文献

优化 MRI 协议和脉冲序列参数以进行本征图像滤波。

Optimization of MRI protocols and pulse sequence parameters for eigenimage filtering.

机构信息

Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI.

出版信息

IEEE Trans Med Imaging. 1994;13(1):161-75. doi: 10.1109/42.276155.

Abstract

The eigenimage filter generates a composite image in which a desired feature is segmented from interfering features. The signal-to-noise ratio (SNR) of the eigenimage equals its contrast-to-noise ratio (CNR) and is directly proportional to the dissimilarity between the desired and interfering features. Since image gray levels are analytical functions of magnetic resonance imaging (MRI) parameters, it is possible to maximize this dissimilarity by optimizing these parameters. For optimization, the authors consider four MRI pulse sequences: multiple spin-echo (MSE); spin-echo (SE); inversion recovery (IR); and gradient-echo (GE). The authors use the mathematical expressions for MRI signals along with intrinsic tissue parameters to express the objective function (normalized SNR of the eigenimage) in terms of MRI parameters. The objective function along with a set of diagnostic or instrumental constraints define a multidimensional nonlinear constrained optimization problem, which the authors solve by the fixed point approach. The optimization technique is demonstrated through its application to phantom and brain images. The authors show that the optimal pulse sequence parameters for a sequence of four MSE and one IR images almost doubles the smallest normalized SNR of the brain eigenimages, as compared to the conventional brain protocol.

摘要

本征像滤波器生成一幅复合图像,其中将从干扰特征中分割出期望的特征。本征像的信噪比(SNR)与其对比度噪声比(CNR)相等,并且与期望特征和干扰特征之间的差异直接成正比。由于图像灰度是磁共振成像(MRI)参数的解析函数,因此可以通过优化这些参数来最大化这种差异。对于优化,作者考虑了四种 MRI 脉冲序列:多自旋回波(MSE);自旋回波(SE);反转恢复(IR);和梯度回波(GE)。作者使用 MRI 信号的数学表达式以及固有组织参数,将目标函数(本征像的归一化 SNR)表示为 MRI 参数。目标函数以及一组诊断或仪器约束定义了多维非线性约束优化问题,作者通过定点法来解决。该优化技术通过在幻影和大脑图像上的应用得到了证明。作者表明,与传统的大脑协议相比,对于四个 MSE 和一个 IR 图像序列,最佳脉冲序列参数几乎将大脑本征像的最小归一化 SNR 提高了一倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验