Zhuang Xiaowei, Yang Zhengshi, Curran Tim, Byrd Richard, Nandy Rajesh, Cordes Dietmar
Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA.
Neuroimage. 2017 Apr 1;149:63-84. doi: 10.1016/j.neuroimage.2016.12.081. Epub 2016 Dec 29.
Canonical correlation analysis (CCA) has been used in Functional Magnetic Resonance Imaging (fMRI) for improved detection of activation by incorporating time series from multiple voxels in a local neighborhood. To improve the specificity of local CCA methods, spatial constraints were previously proposed. In this study, constraints are generalized by introducing a family model of spatial constraints for CCA to further increase both sensitivity and specificity in fMRI activation detection. The proposed locally-constrained CCA (cCCA) model is formulated in terms of a multivariate constrained optimization problem and solved efficiently with numerical optimization techniques. To evaluate the performance of this cCCA model, simulated data are generated with a Signal-To-Noise Ratio of 0.25, which is realistic to the noise level contained in episodic memory fMRI data. Receiver operating characteristic (ROC) methods are used to compare the performance of different models. The cCCA model with optimum parameters (called optimum-cCCA) obtains the largest area under the ROC curve. Furthermore, a novel validation method is proposed to validate the selected optimum-cCCA parameters based on ROC from simulated data and real fMRI data. Results for optimum-cCCA are then compared with conventional fMRI analysis methods using data from an episodic memory task. Wavelet-resampled resting-state data are used to obtain the null distribution of activation. For simulated data, accuracy in detecting activation increases for the optimum-cCCA model by about 43% as compared to the single voxel analysis with comparable Gaussian smoothing. Results from the real fMRI data set indicate a significant increase in activation detection, particularly in hippocampus, para-hippocampal area and nearby medial temporal lobe regions with the proposed method.
典型相关分析(CCA)已被应用于功能磁共振成像(fMRI)中,通过合并局部邻域内多个体素的时间序列来改进激活检测。为了提高局部CCA方法的特异性,之前有人提出了空间约束。在本研究中,通过引入CCA的空间约束族模型来推广约束,以进一步提高fMRI激活检测中的灵敏度和特异性。所提出的局部约束CCA(cCCA)模型是根据多元约束优化问题制定的,并使用数值优化技术有效地求解。为了评估该cCCA模型的性能,生成了信噪比为0.25的模拟数据,这与情景记忆fMRI数据中包含的噪声水平相符。使用接收器操作特征(ROC)方法来比较不同模型的性能。具有最优参数的cCCA模型(称为最优cCCA)在ROC曲线下获得了最大面积。此外,还提出了一种新颖的验证方法,基于模拟数据和真实fMRI数据的ROC来验证所选的最优cCCA参数。然后使用来自情景记忆任务的数据,将最优cCCA的结果与传统fMRI分析方法进行比较。使用小波重采样的静息态数据来获得激活的零分布。对于模拟数据,与具有可比高斯平滑的单个体素分析相比,最优cCCA模型在检测激活方面的准确率提高了约43%。来自真实fMRI数据集的结果表明,使用所提出的方法,激活检测有显著增加,特别是在海马体、海马旁区域和附近的内侧颞叶区域。