Suppr超能文献

Kv1.5 关联修饰 Kv1.3 的运输和膜定位。

Kv1.5 association modifies Kv1.3 traffic and membrane localization.

作者信息

Vicente Rubén, Villalonga Núria, Calvo Maria, Escalada Artur, Solsona Carles, Soler Concepció, Tamkun Michael M, Felipe Antonio

机构信息

Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain.

出版信息

J Biol Chem. 2008 Mar 28;283(13):8756-64. doi: 10.1074/jbc.M708223200. Epub 2008 Jan 24.

Abstract

Kv1.3 activity is determined by raft association. In addition to Kv1.3, leukocytes also express Kv1.5, and both channels control physiological responses. Because the oligomeric composition may modify the channel targeting to the membrane, we investigated heterotetrameric Kv1.3/Kv1.5 channel traffic and targeting in HEK cells. Kv1.3 and Kv1.5 generate multiple heterotetramers with differential surface expression according to the subunit composition. FRET analysis and pharmacology confirm the presence of functional hybrid channels. Raft association was evaluated by cholesterol depletion, caveolae colocalization, and lateral diffusion at the cell surface. Immunoprecipitation showed that both Kv1.3 and heteromeric channels associate with caveolar raft domains. However, homomeric Kv1.3 channels showed higher association with caveolin traffic. Moreover, FRAP analysis revealed higher mobility for hybrid Kv1.3/Kv1.5 than Kv1.3 homotetramers, suggesting that heteromers target to distinct surface microdomains. Studies with lipopolysaccharide-activated macrophages further supported that different physiological mechanisms govern Kv1.3 and Kv1.5 targeting to rafts. Our results implicate the traffic and localization of Kv1.3/Kv1.5 heteromers in the complex regulation of immune system cells.

摘要

Kv1.3的活性由脂筏结合决定。除了Kv1.3,白细胞还表达Kv1.5,这两种通道都控制生理反应。由于寡聚体组成可能会改变通道在膜上的定位,我们研究了异源四聚体Kv1.3/Kv1.5通道在HEK细胞中的转运和定位。Kv1.3和Kv1.5根据亚基组成产生具有不同表面表达的多种异源四聚体。荧光共振能量转移分析和药理学证实了功能性杂合通道的存在。通过胆固醇耗竭、小窝共定位和细胞表面的侧向扩散来评估脂筏结合。免疫沉淀显示Kv1.3和异源通道都与小窝脂筏结构域相关联。然而,同源Kv1.3通道与小窝蛋白转运的关联更高。此外,荧光漂白恢复分析显示,杂合Kv1.3/Kv1.5的流动性高于Kv1.3同源四聚体,这表明异源四聚体靶向不同的表面微结构域。对脂多糖激活的巨噬细胞的研究进一步支持了不同的生理机制控制Kv1.3和Kv1.5向脂筏的靶向。我们的结果表明Kv1.3/Kv1.5异源四聚体的转运和定位参与了免疫系统细胞的复杂调节。

相似文献

1
Kv1.5 association modifies Kv1.3 traffic and membrane localization.
J Biol Chem. 2008 Mar 28;283(13):8756-64. doi: 10.1074/jbc.M708223200. Epub 2008 Jan 24.
2
Multiple Kv1.5 targeting to membrane surface microdomains.
J Cell Physiol. 2008 Dec;217(3):667-73. doi: 10.1002/jcp.21538.
3
Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages.
J Biol Chem. 2006 Dec 8;281(49):37675-85. doi: 10.1074/jbc.M605617200. Epub 2006 Oct 11.
4
Caveolin regulates kv1.5 trafficking to cholesterol-rich membrane microdomains.
Mol Pharmacol. 2008 Mar;73(3):678-85. doi: 10.1124/mol.107.042093. Epub 2007 Nov 28.
5
KCNE4 suppresses Kv1.3 currents by modulating trafficking, surface expression and channel gating.
J Cell Sci. 2009 Oct 15;122(Pt 20):3738-48. doi: 10.1242/jcs.056689. Epub 2009 Sep 22.
6
Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages.
Biochem Biophys Res Commun. 2007 Jan 26;352(4):913-8. doi: 10.1016/j.bbrc.2006.11.120. Epub 2006 Dec 4.
7
Caveolin interaction governs Kv1.3 lipid raft targeting.
Sci Rep. 2016 Mar 2;6:22453. doi: 10.1038/srep22453.
8
Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains.
J Cell Sci. 2005 May 15;118(Pt 10):2155-66. doi: 10.1242/jcs.02348. Epub 2005 Apr 26.
9
Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae.
J Biol Chem. 2001 Mar 16;276(11):8409-14. doi: 10.1074/jbc.M009948200. Epub 2000 Dec 13.
10
K1.5-Kβ1.3 Recycling Is PKC-Dependent.
Int J Mol Sci. 2021 Jan 29;22(3):1336. doi: 10.3390/ijms22031336.

引用本文的文献

2
The contribution of ion channels to shaping macrophage behaviour.
Front Pharmacol. 2022 Sep 7;13:970234. doi: 10.3389/fphar.2022.970234. eCollection 2022.
3
KCNE4-dependent functional consequences of Kv1.3-related leukocyte physiology.
Sci Rep. 2021 Jul 16;11(1):14632. doi: 10.1038/s41598-021-94015-9.
4
A novel mitochondrial Kv1.3-caveolin axis controls cell survival and apoptosis.
Elife. 2021 Jul 1;10:e69099. doi: 10.7554/eLife.69099.
5
Anti-inflammatory effects of FS48, the first potassium channel inhibitor from the salivary glands of the flea Xenopsylla cheopis.
J Biol Chem. 2021 Jan-Jun;296:100670. doi: 10.1016/j.jbc.2021.100670. Epub 2021 Apr 15.
6
Implication of Voltage-Gated Potassium Channels in Neoplastic Cell Proliferation.
Cancers (Basel). 2019 Mar 1;11(3):287. doi: 10.3390/cancers11030287.
7
The Potassium Channel Odyssey: Mechanisms of Traffic and Membrane Arrangement.
Int J Mol Sci. 2019 Feb 9;20(3):734. doi: 10.3390/ijms20030734.
8
Caveolin-1 facilitated KCNA5 expression, promoting breast cancer viability.
Oncol Lett. 2018 Oct;16(4):4829-4838. doi: 10.3892/ol.2018.9261. Epub 2018 Aug 3.
9
Caveolar targeting links Kv1.3 with the insulin-dependent adipocyte physiology.
Cell Mol Life Sci. 2018 Nov;75(21):4059-4075. doi: 10.1007/s00018-018-2851-7. Epub 2018 Jun 11.
10
Voltage Gated Potassium Channel Kv1.3 Is Upregulated on Activated Astrocytes in Experimental Autoimmune Encephalomyelitis.
Neurochem Res. 2018 May;43(5):1020-1034. doi: 10.1007/s11064-018-2509-8. Epub 2018 Mar 24.

本文引用的文献

1
Caveolin regulates kv1.5 trafficking to cholesterol-rich membrane microdomains.
Mol Pharmacol. 2008 Mar;73(3):678-85. doi: 10.1124/mol.107.042093. Epub 2007 Nov 28.
2
Methyl-beta-cyclodextrin reversibly alters the gating of lipid rafts-associated Kv1.3 channels in Jurkat T lymphocytes.
Pflugers Arch. 2007 May;454(2):235-44. doi: 10.1007/s00424-007-0208-4. Epub 2007 Jan 23.
3
4
Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages.
Biochem Biophys Res Commun. 2007 Jan 26;352(4):913-8. doi: 10.1016/j.bbrc.2006.11.120. Epub 2006 Dec 4.
5
Neurotrophin B receptor kinase increases Kv subfamily member 1.3 (Kv1.3) ion channel half-life and surface expression.
Neuroscience. 2007 Jan 19;144(2):531-46. doi: 10.1016/j.neuroscience.2006.09.055. Epub 2006 Nov 13.
6
The potassium channels Kv1.5 and Kv1.3 modulate distinct functions of microglia.
Mol Cell Neurosci. 2006 Dec;33(4):401-11. doi: 10.1016/j.mcn.2006.08.009. Epub 2006 Oct 19.
7
Localization of Kv1.5 channels in rat and canine myocyte sarcolemma.
FEBS Lett. 2006 Nov 13;580(26):6039-46. doi: 10.1016/j.febslet.2006.09.069. Epub 2006 Oct 12.
8
Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages.
J Biol Chem. 2006 Dec 8;281(49):37675-85. doi: 10.1074/jbc.M605617200. Epub 2006 Oct 11.
10
Caveolin-1 knockout alters beta-adrenoceptors function in mouse small intestine.
Am J Physiol Gastrointest Liver Physiol. 2006 Dec;291(6):G1020-30. doi: 10.1152/ajpgi.00159.2006. Epub 2006 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验