Suppr超能文献

相似文献

1
The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae.
Science. 2008 Jan 25;319(5862):482-4. doi: 10.1126/science.1151582.
2
Systems biology. Enlightening Rhythms.
Science. 2008 Jan 25;319(5862):417-8. doi: 10.1126/science.1154208.
8
Vacuolar H+-ATPase works in parallel with the HOG pathway to adapt Saccharomyces cerevisiae cells to osmotic stress.
Eukaryot Cell. 2012 Mar;11(3):282-91. doi: 10.1128/EC.05198-11. Epub 2011 Dec 30.
9
Hog1: 20 years of discovery and impact.
Sci Signal. 2014 Sep 16;7(343):re7. doi: 10.1126/scisignal.2005458.
10
MAPK feedback encodes a switch and timer for tunable stress adaptation in yeast.
Sci Signal. 2015 Jan 13;8(359):ra5. doi: 10.1126/scisignal.2005774.

引用本文的文献

1
Oscillatory signal decoding within the ERK cascade.
bioRxiv. 2025 Jul 28:2025.07.24.666680. doi: 10.1101/2025.07.24.666680.
3
Quantifying the nuclear localization of fluorescently tagged proteins.
Bioinform Adv. 2025 May 12;5(1):vbaf114. doi: 10.1093/bioadv/vbaf114. eCollection 2025.
4
Phenotypic consequences of logarithmic signaling in MAPK stress response.
iScience. 2024 Dec 19;28(1):111625. doi: 10.1016/j.isci.2024.111625. eCollection 2025 Jan 17.
5
Transient frequency preference responses in cell signaling systems.
NPJ Syst Biol Appl. 2024 Aug 11;10(1):86. doi: 10.1038/s41540-024-00413-w.
7
Phenotypic consequences of logarithmic signaling in MAPK stress response.
bioRxiv. 2023 Dec 7:2023.12.05.570188. doi: 10.1101/2023.12.05.570188.
9
Positive feedback induces switch between distributive and processive phosphorylation of Hog1.
Nat Commun. 2023 Apr 29;14(1):2477. doi: 10.1038/s41467-023-37430-y.
10
Rate thresholds in cell signaling have functional and phenotypic consequences in non-linear time-dependent environments.
Front Cell Dev Biol. 2023 Mar 21;11:1124874. doi: 10.3389/fcell.2023.1124874. eCollection 2023.

本文引用的文献

2
The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast.
Mol Biol Cell. 2006 Oct;17(10):4400-10. doi: 10.1091/mbc.e06-04-0315. Epub 2006 Aug 2.
3
Using process diagrams for the graphical representation of biological networks.
Nat Biotechnol. 2005 Aug;23(8):961-6. doi: 10.1038/nbt1111.
4
Integrative model of the response of yeast to osmotic shock.
Nat Biotechnol. 2005 Aug;23(8):975-82. doi: 10.1038/nbt1114. Epub 2005 Jul 17.
5
The use of oscillatory signals in the study of genetic networks.
Proc Natl Acad Sci U S A. 2005 May 17;102(20):7063-8. doi: 10.1073/pnas.0403790102. Epub 2005 May 9.
6
Anaerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock.
Eukaryot Cell. 2004 Dec;3(6):1381-90. doi: 10.1128/EC.3.6.1381-1390.2004.
8
Quantitative cell biology with the Virtual Cell.
Trends Cell Biol. 2003 Nov;13(11):570-6. doi: 10.1016/j.tcb.2003.09.002.
9
Osmotic stress signaling and osmoadaptation in yeasts.
Microbiol Mol Biol Rev. 2002 Jun;66(2):300-72. doi: 10.1128/MMBR.66.2.300-372.2002.
10
Determination of causal connectivities of species in reaction networks.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5816-21. doi: 10.1073/pnas.022049699.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验