Suppr超能文献

局部泛化误差模型及其在径向基函数神经网络结构选择中的应用。

Localized generalization error model and its application to architecture selection for radial basis function neural network.

作者信息

Yeung Daniel S, Ng Wing W Y, Wang Defeng, Tsang Eric C C, Wang Xi-Zhao

机构信息

Media and Life Science, Department of Computer Science and Technology, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China.

出版信息

IEEE Trans Neural Netw. 2007 Sep;18(5):1294-305. doi: 10.1109/tnn.2007.894058.

Abstract

The generalization error bounds found by current error models using the number of effective parameters of a classifier and the number of training samples are usually very loose. These bounds are intended for the entire input space. However, support vector machine (SVM), radial basis function neural network (RBFNN), and multilayer perceptron neural network (MLPNN) are local learning machines for solving problems and treat unseen samples near the training samples to be more important. In this paper, we propose a localized generalization error model which bounds from above the generalization error within a neighborhood of the training samples using stochastic sensitivity measure. It is then used to develop an architecture selection technique for a classifier with maximal coverage of unseen samples by specifying a generalization error threshold. Experiments using 17 University of California at Irvine (UCI) data sets show that, in comparison with cross validation (CV), sequential learning, and two other ad hoc methods, our technique consistently yields the best testing classification accuracy with fewer hidden neurons and less training time.

摘要

当前利用分类器有效参数数量和训练样本数量的误差模型所得到的泛化误差界通常非常宽松。这些界适用于整个输入空间。然而,支持向量机(SVM)、径向基函数神经网络(RBFNN)和多层感知器神经网络(MLPNN)是用于解决问题的局部学习机器,并且认为在训练样本附近的未见过的样本更为重要。在本文中,我们提出了一种局部泛化误差模型,该模型使用随机敏感度度量从上方界定训练样本邻域内的泛化误差。然后,通过指定泛化误差阈值,将其用于开发一种具有最大未见过样本覆盖率的分类器架构选择技术。使用17个加利福尼亚大学欧文分校(UCI)数据集进行的实验表明,与交叉验证(CV)、顺序学习和其他两种临时方法相比,我们的技术始终能以更少的隐藏神经元和更短的训练时间产生最佳的测试分类准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验