Suppr超能文献

用于内核选择和非线性特征提取的双线性分析。

Bilinear analysis for kernel selection and nonlinear feature extraction.

作者信息

Yang Shu, Yan Shuicheng, Zhang Chao, Tang Xiaoou

机构信息

Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA.

出版信息

IEEE Trans Neural Netw. 2007 Sep;18(5):1442-52. doi: 10.1109/tnn.2007.894042.

Abstract

This paper presents a unified criterion, Fisher + kernel criterion (FKC), for feature extraction and recognition. This new criterion is intended to extract the most discriminant features in different nonlinear spaces, and then, fuse these features under a unified measurement. Thus, FKC can simultaneously achieve nonlinear discriminant analysis and kernel selection. In addition, we present an efficient algorithm Fisher + kernel analysis (FKA), which utilizes the bilinear analysis, to optimize the new criterion. This FKA algorithm can alleviate the ill-posed problem existed in traditional kernel discriminant analysis (KDA), and usually, has no singularity problem. The effectiveness of our proposed algorithm is validated by a series of face-recognition experiments on several different databases.

摘要

本文提出了一种用于特征提取和识别的统一准则,即Fisher+核准则(FKC)。这个新准则旨在在不同的非线性空间中提取最具判别力的特征,然后在统一的度量下融合这些特征。因此,FKC能够同时实现非线性判别分析和核选择。此外,我们提出了一种高效算法Fisher+核分析(FKA),它利用双线性分析来优化新准则。这种FKA算法可以缓解传统核判别分析(KDA)中存在的不适定问题,并且通常不存在奇异性问题。我们所提出算法的有效性通过在几个不同数据库上进行的一系列人脸识别实验得到了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验