Mount Sinai Med. Center, New York, NY.
IEEE Trans Med Imaging. 1990;9(1):11-23. doi: 10.1109/42.52978.
A deconvolution technique is described which utilizes orthogonal polynomials (DOP) and handles inevitable noise in such a way that pixel time activity curves can be deconvolved. This solves the issue of quantitative analysis of serial scintigraphic data in a manner that preserves the high spatial resolution inherent in raw data. In the current work a complete mathematical description of the new deconvolution technique is presented. The DOP method is designed for use with an array processor and results in a set of linear response function (LRF) images. Techniques to calibrate the measuring devices and correct for distorted input functions in order to obtain the LRF images in absolute units are described. A simulation study compares the DOP method with the Fourier transform and the discrete deconvolution algorithm both with and without various noise levels. The impact on the convergence of the DOP algorithm of undesired blood activity simultaneously measured with the organ-target activity was simulated.
一种反卷积技术被描述,它利用正交多项式(DOP),并以一种方式处理不可避免的噪声,使得像素时间活动曲线可以进行反卷积。这以保留原始数据固有的高空间分辨率的方式解决了系列闪烁扫描数据的定量分析问题。在当前的工作中,提出了新的反卷积技术的完整数学描述。DOP 方法设计用于与数组处理器一起使用,并产生一组线性响应函数(LRF)图像。描述了校准测量设备和校正输入函数失真的技术,以便以绝对单位获得 LRF 图像。一项模拟研究比较了 DOP 方法与傅里叶变换和离散反卷积算法,包括有和没有各种噪声水平的情况。同时测量与器官靶活动的不希望的血液活动对 DOP 算法的收敛性的影响进行了模拟。