Suppr超能文献

基于轮廓的尺度空间匹配的磁共振图像组织边界细化。

Tissue boundary refinement in magnetic resonance images using contour-based scale space matching.

机构信息

Dept. of Electr. Eng., Ohio State Univ., Columbus, OH.

出版信息

IEEE Trans Med Imaging. 1991;10(2):109-21. doi: 10.1109/42.79468.

Abstract

An algorithm for computationally focusing the tissue boundaries detected from magnetic resonance images is presented. The proposed approach is a novel, whole-contour-based technique for tracing edges selected at a coarse scale into successively finer scales to recover the needed precision. The tracing algorithm builds consensus through a fast pixel voting scheme. Also presented is a rigorous method for determining the appropriate itinerary when traversing scale space, beginning from the premise of a maximum pixel migration per unit change in scale parameter. This leads to an efficient method of processing images so as to maximize accuracy and minimize noise. Although the LoG (Laplacian of Gaussian) is used for many of the experiments, results using a novel edge detector which is mathematically superior to and faster to compute than the LoG and for which fewer steps are required to traverse the same effective span in scale space are presented. Experimental results on real data are presented, and other potential applications are discussed.

摘要

提出了一种从磁共振图像中计算聚焦组织边界的算法。所提出的方法是一种新颖的、基于整体轮廓的技术,用于将在粗尺度上选择的边缘跟踪到逐渐更细的尺度,以恢复所需的精度。跟踪算法通过快速像素投票方案建立共识。还提出了一种严格的方法来确定在尺度空间中遍历的适当行程,从每单位尺度参数变化的最大像素迁移的前提开始。这导致了一种有效的图像处理方法,以最大限度地提高准确性和最小化噪声。尽管在许多实验中使用了 LoG(高斯拉普拉斯算子),但也提出了使用一种新的边缘检测器的结果,该边缘检测器在数学上优于 LoG,并且计算速度更快,并且在尺度空间中遍历相同有效跨度所需的步骤更少。给出了真实数据的实验结果,并讨论了其他潜在的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验