Suppr超能文献

用于海洋浮游生物研究的水下数字全息术。

Underwater digital holography for studies of marine plankton.

作者信息

Sun H, Benzie P W, Burns N, Hendry D C, Player M A, Watson J

机构信息

School of Engineering and Physical Sciences, University of Aberdeen, Aberdeen, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2008 May 28;366(1871):1789-806. doi: 10.1098/rsta.2007.2187.

Abstract

Conventional and digital holographies are proving to be increasingly important for studies of marine zooplankton and other underwater biological applications. This paper reports on the use of a subsea digital holographic camera (eHoloCam) for the analysis and identification of marine organisms and other subsea particles. Unlike recording on a photographic film, a digital hologram (e-hologram) is recorded on an electronic sensor and reconstructed numerically in a computer by simulating the propagation of the optical field in space. By comparison with other imaging techniques, an e-hologram has several advantages such as three-dimensional spatial reconstruction, non-intrusive and non-destructive interrogation of the recording sampling volume and the ability to record holographic videos. The basis of much work in optics lies in Maxwell's electromagnetic theory and holography is no exception: we report here on two of the numerical reconstruction algorithms we have used to reconstruct holograms obtained using eHoloCam and how their starting point lies in Maxwell's equations. Derivation of the angular spectrum algorithm for plane waves is provided as an exact method for the in-line numerical reconstruction of digital holograms. The Fresnel numerical reconstruction algorithm is derived from the angular spectrum method. In-line holograms are numerically processed before and after reconstruction to remove periodic noise from captured images and to increase image contrast. The ability of the Fresnel integration reconstruction algorithm to extend the reconstructed volume beyond the recording sensor dimensions is also shown with a 50% extension of the reconstruction area. Finally, we present some images obtained from recent deployments of eHoloCam in the North Sea and Faeroes Channel.

摘要

传统全息术和数字全息术在海洋浮游动物研究及其他水下生物应用中日益重要。本文报道了一种水下数字全息相机(eHoloCam)在海洋生物及其他水下粒子分析与识别中的应用。与在胶片上记录不同,数字全息图(电子全息图)记录在电子传感器上,并通过模拟光场在空间中的传播在计算机中进行数值重建。与其他成像技术相比,电子全息图具有诸多优势,如三维空间重建、对记录采样体积进行非侵入性和非破坏性检测以及记录全息视频的能力。光学领域的许多工作都基于麦克斯韦电磁理论,全息术也不例外:我们在此报告了用于重建使用eHoloCam获得的全息图的两种数值重建算法,以及它们如何源于麦克斯韦方程组。给出了平面波角谱算法的推导,作为数字全息图同轴数值重建的精确方法。菲涅耳数值重建算法由角谱法推导而来。在重建前后对同轴全息图进行数值处理,以去除捕获图像中的周期性噪声并提高图像对比度。还展示了菲涅耳积分重建算法将重建体积扩展到记录传感器尺寸之外的能力,重建区域扩展了50%。最后,我们展示了一些近期在北海和法罗群岛海峡部署eHoloCam所获得的图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验