Suppr超能文献

一种缺乏groEL同源物cpn60.1的结核分枝杆菌突变体是有活力的,但在感染动物模型中未能诱导炎症反应。

A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection.

作者信息

Hu Yanmin, Henderson Brian, Lund Peter A, Tormay Peter, Ahmed M Tabish, Gurcha Sudagar S, Besra Gurdyal S, Coates Anthony R M

机构信息

Medical Microbiology, Centre of Infection, Division of Cellular and Molecular Medicine, St. George's University of London, London SW17 ORE, United Kingdom.

出版信息

Infect Immun. 2008 Apr;76(4):1535-46. doi: 10.1128/IAI.01078-07. Epub 2008 Jan 28.

Abstract

The causative agent of tuberculosis, Mycobacterium tuberculosis, has two chaperonin (Cpn60) proteins and one cochaperonin (Cpn10) protein. We show here that cpn60.2 and cpn10, but not cpn60.1, are essential for cell survival. A mutant lacking Cpn60.1 was indistinguishable from the wild-type organism in plate and broth culture and within murine macrophages, although it showed increased sensitivity to high temperature (55 degrees C). However, infection of mice with the Deltacpn60.1 mutant revealed a major difference from the wild-type organism. In spite of having equal numbers of bacteria in infected sites, the Deltacpn60.1 mutant failed to produce granulomatous inflammation in either mice or guinea pigs. This was associated with reduced cytokine expression in infected animals and macrophages. Cell wall lipid acid composition was not altered in the mutant strain. Thus, it appears that Cpn60.1 is an important agent in the regulation of the cytokine-dependent granulomatous response in M. tuberculosis infection.

摘要

结核病的病原体结核分枝杆菌有两种伴侣蛋白(Cpn60)和一种伴侣蛋白辅因子(Cpn10)。我们在此表明,cpn60.2和cpn10对细胞存活至关重要,而cpn60.1并非如此。缺乏Cpn60.1的突变体在平板和肉汤培养中以及在小鼠巨噬细胞内与野生型菌株没有区别,尽管它对高温(55摄氏度)表现出更高的敏感性。然而,用Deltacpn60.1突变体感染小鼠揭示了其与野生型菌株的一个主要差异。尽管感染部位的细菌数量相等,但Deltacpn60.1突变体在小鼠或豚鼠中均未能引发肉芽肿性炎症。这与感染动物和巨噬细胞中细胞因子表达的降低有关。突变菌株的细胞壁脂质酸组成没有改变。因此,似乎Cpn60.1是结核分枝杆菌感染中细胞因子依赖性肉芽肿反应调节的重要因子。

相似文献

2
Comparison of the moonlighting actions of the two highly homologous chaperonin 60 proteins of Mycobacterium tuberculosis.
Infect Immun. 2010 Jul;78(7):3196-206. doi: 10.1128/IAI.01379-09. Epub 2010 Apr 26.
3
Biochemical and immunological characterization of a cpn60.1 knockout mutant of Mycobacterium bovis BCG.
Microbiology (Reading). 2011 Apr;157(Pt 4):1205-1219. doi: 10.1099/mic.0.045120-0. Epub 2010 Dec 2.
4
Towards understanding the biological function of the unusual chaperonin Cpn60.1 (GroEL1) of Mycobacterium tuberculosis.
Tuberculosis (Edinb). 2016 Mar;97:137-46. doi: 10.1016/j.tube.2015.11.003. Epub 2015 Dec 12.
5
Functional consequences of single:double ring transitions in chaperonins: life in the cold.
Mol Microbiol. 2004 Jul;53(1):167-82. doi: 10.1111/j.1365-2958.2004.04077.x.
7
Mycobacterium tuberculosis employs Cpn60.2 as an adhesin that binds CD43 on the macrophage surface.
Cell Microbiol. 2010 Nov;12(11):1634-47. doi: 10.1111/j.1462-5822.2010.01496.x.

引用本文的文献

1
Polypharmacology-Driven Discovery and Design of Highly Selective, Dual and Multitargeting Inhibitors of - A Review.
Curr Drug Targets. 2024;25(9):620-634. doi: 10.2174/0113894501306302240526160804.
3
Characterization of Molecular Chaperone GroEL as a Potential Virulence Factor in .
Foods. 2023 Sep 12;12(18):3404. doi: 10.3390/foods12183404.
4
DprE2 is a molecular target of the anti-tubercular nitroimidazole compounds pretomanid and delamanid.
Nat Commun. 2023 Jun 28;14(1):3828. doi: 10.1038/s41467-023-39300-z.
6
Nitrogen metabolism in mycobacteria: the key genes and targeted antimicrobials.
Front Microbiol. 2023 May 18;14:1149041. doi: 10.3389/fmicb.2023.1149041. eCollection 2023.
7
Mechanisms of a Active Peptide.
Pharmaceutics. 2023 Feb 6;15(2):540. doi: 10.3390/pharmaceutics15020540.
8
DnaK Promotes Fibronectin-Mediated Adherence to HUVECs and Induces a Proinflammatory Response.
Int J Mol Sci. 2021 Aug 8;22(16):8528. doi: 10.3390/ijms22168528.
9
Determination of variable region sequences from hybridoma immunoglobulins that target Mycobacterium tuberculosis virulence factors.
PLoS One. 2021 Aug 20;16(8):e0256079. doi: 10.1371/journal.pone.0256079. eCollection 2021.
10

本文引用的文献

1
The 65kDa antigen of mycobacteria-a common bacterial protein?
Immunol Today. 1987;8(7-8):215-9. doi: 10.1016/0167-5699(87)90168-X.
2
Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection.
Infect Immun. 2006 Jul;74(7):3693-706. doi: 10.1128/IAI.01882-05.
3
Mycobacterium avium genes associated with the ability to form a biofilm.
Appl Environ Microbiol. 2006 Jan;72(1):819-25. doi: 10.1128/AEM.72.1.819-825.2006.
5
The unusual chaperonins of Mycobacterium tuberculosis.
Tuberculosis (Edinb). 2005 Sep-Nov;85(5-6):385-94. doi: 10.1016/j.tube.2005.08.014. Epub 2005 Oct 25.
6
Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli.
Cell. 2005 Jul 29;122(2):209-20. doi: 10.1016/j.cell.2005.05.028.
7
Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth.
Arch Microbiol. 2005 May;183(4):253-65. doi: 10.1007/s00203-005-0768-7. Epub 2005 Apr 14.
8
Heat-shock proteins induce T-cell regulation of chronic inflammation.
Nat Rev Immunol. 2005 Apr;5(4):318-30. doi: 10.1038/nri1593.
9
The intercellular signaling activity of the Mycobacterium tuberculosis chaperonin 60.1 protein resides in the equatorial domain.
J Biol Chem. 2005 Apr 8;280(14):14272-7. doi: 10.1074/jbc.M414158200. Epub 2005 Jan 26.
10
Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis.
J Bacteriol. 2004 Dec;186(23):8105-13. doi: 10.1128/JB.186.23.8105-8113.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验