Suppr超能文献

传递性同源性引导的结构研究导致发现了序列同一性为40%但折叠方式不同的Cro蛋白。

Transitive homology-guided structural studies lead to discovery of Cro proteins with 40% sequence identity but different folds.

作者信息

Roessler Christian G, Hall Branwen M, Anderson William J, Ingram Wendy M, Roberts Sue A, Montfort William R, Cordes Matthew H J

机构信息

Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2343-8. doi: 10.1073/pnas.0711589105. Epub 2008 Jan 28.

Abstract

Proteins that share common ancestry may differ in structure and function because of divergent evolution of their amino acid sequences. For a typical diverse protein superfamily, the properties of a few scattered members are known from experiment. A satisfying picture of functional and structural evolution in relation to sequence changes, however, may require characterization of a larger, well chosen subset. Here, we employ a "stepping-stone" method, based on transitive homology, to target sequences intermediate between two related proteins with known divergent properties. We apply the approach to the question of how new protein folds can evolve from preexisting folds and, in particular, to an evolutionary change in secondary structure and oligomeric state in the Cro family of bacteriophage transcription factors, initially identified by sequence-structure comparison of distant homologs from phages P22 and lambda. We report crystal structures of two Cro proteins, Xfaso 1 and Pfl 6, with sequences intermediate between those of P22 and lambda. The domains show 40% sequence identity but differ by switching of alpha-helix to beta-sheet in a C-terminal region spanning approximately 25 residues. Sedimentation analysis also suggests a correlation between helix-to-sheet conversion and strengthened dimerization.

摘要

由于氨基酸序列的趋异进化,具有共同祖先的蛋白质在结构和功能上可能会有所不同。对于一个典型的多样化蛋白质超家族,通过实验仅了解少数分散成员的特性。然而,要想得到一幅关于功能和结构进化与序列变化关系的完整图景,可能需要对一个经过精心挑选的更大子集进行表征。在这里,我们采用一种基于传递同源性的“垫脚石”方法,来靶向两个具有已知趋异特性的相关蛋白质之间的中间序列。我们将该方法应用于新蛋白质折叠如何从已有的折叠进化而来的问题,特别是应用于噬菌体转录因子Cro家族中二级结构和寡聚状态的进化变化,这最初是通过对噬菌体P22和λ的远缘同源物进行序列 - 结构比较而确定的。我们报道了两种Cro蛋白Xfaso 1和Pfl 6的晶体结构,它们的序列处于P22和λ的序列之间。这些结构域显示出40%的序列同一性,但在一个跨越约25个残基的C端区域,α - 螺旋与β - 折叠发生了转换。沉降分析也表明螺旋到折叠的转换与二聚化增强之间存在相关性。

相似文献

1
Transitive homology-guided structural studies lead to discovery of Cro proteins with 40% sequence identity but different folds.
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2343-8. doi: 10.1073/pnas.0711589105. Epub 2008 Jan 28.
2
Secondary structure switching in Cro protein evolution.
Structure. 2004 Apr;12(4):569-81. doi: 10.1016/j.str.2004.02.024.
3
Evolutionary bridges to new protein folds: design of C-terminal Cro protein chameleon sequences.
Protein Eng Des Sel. 2011 Sep;24(9):765-71. doi: 10.1093/protein/gzr027. Epub 2011 Jun 14.
7
Design of lambda Cro fold: solution structure of a monomeric variant of the de novo protein.
J Mol Biol. 2005 Dec 9;354(4):801-14. doi: 10.1016/j.jmb.2005.10.005. Epub 2005 Oct 21.
9
Retroevolution of lambda Cro toward a stable monomer.
Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2345-50. doi: 10.1073/pnas.0537925100. Epub 2003 Feb 21.

引用本文的文献

1
Fold-switching proteins.
ArXiv. 2025 Jul 14:arXiv:2507.10839v1.
2
Fluid protein fold space and its implications.
Bioessays. 2023 Sep;45(9):e2300057. doi: 10.1002/bies.202300057. Epub 2023 Jul 11.
3
Identification of a covert evolutionary pathway between two protein folds.
Nat Commun. 2023 Jun 1;14(1):3177. doi: 10.1038/s41467-023-38519-0.
4
A review of visualisations of protein fold networks and their relationship with sequence and function.
Biol Rev Camb Philos Soc. 2023 Feb;98(1):243-262. doi: 10.1111/brv.12905. Epub 2022 Oct 9.
5
A high-throughput predictive method for sequence-similar fold switchers.
Biopolymers. 2021 Oct;112(10):e23416. doi: 10.1002/bip.23416. Epub 2021 Jan 19.
6
Dynamic and conformational switching in proteins.
Biopolymers. 2021 Oct;112(10):e23411. doi: 10.1002/bip.23411. Epub 2020 Dec 3.
7
Functional and Regulatory Roles of Fold-Switching Proteins.
Structure. 2021 Jan 7;29(1):6-14. doi: 10.1016/j.str.2020.10.006. Epub 2020 Nov 10.
9
Structural metamorphism and polymorphism in proteins on the brink of thermodynamic stability.
Protein Sci. 2018 Sep;27(9):1557-1567. doi: 10.1002/pro.3458. Epub 2018 Sep 24.
10
Multistep mutational transformation of a protein fold through structural intermediates.
Protein Sci. 2018 Oct;27(10):1767-1779. doi: 10.1002/pro.3488. Epub 2018 Oct 16.

本文引用的文献

2
Common evolutionary origin of swapped-hairpin and double-psi beta barrels.
Structure. 2006 Oct;14(10):1489-98. doi: 10.1016/j.str.2006.08.005.
5
Evolution of protein fold in the presence of functional constraints.
Curr Opin Struct Biol. 2006 Jun;16(3):399-408. doi: 10.1016/j.sbi.2006.04.003. Epub 2006 May 2.
6
Optimal description of a protein structure in terms of multiple groups undergoing TLS motion.
Acta Crystallogr D Biol Crystallogr. 2006 Apr;62(Pt 4):439-50. doi: 10.1107/S0907444906005270. Epub 2006 Mar 18.
7
Slow assembly and disassembly of lambda Cro repressor dimers.
J Mol Biol. 2005 Jul 29;350(5):919-29. doi: 10.1016/j.jmb.2005.05.054.
8
The HHpred interactive server for protein homology detection and structure prediction.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8. doi: 10.1093/nar/gki408.
9
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.
10
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验