Suppr超能文献

流体蛋白质折叠空间及其意义。

Fluid protein fold space and its implications.

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA.

National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

Bioessays. 2023 Sep;45(9):e2300057. doi: 10.1002/bies.202300057. Epub 2023 Jul 11.

Abstract

Fold-switching proteins, which remodel their secondary and tertiary structures in response to cellular stimuli, suggest a new view of protein fold space. For decades, experimental evidence has indicated that protein fold space is discrete: dissimilar folds are encoded by dissimilar amino acid sequences. Challenging this assumption, fold-switching proteins interconnect discrete groups of dissimilar protein folds, making protein fold space fluid. Three recent observations support the concept of fluid fold space: (1) some amino acid sequences interconvert between folds with distinct secondary structures, (2) some naturally occurring sequences have switched folds by stepwise mutation, and (3) fold switching is evolutionarily selected and likely confers advantage. These observations indicate that minor amino acid sequence modifications can transform protein structure and function. Consequently, proteomic structural and functional diversity may be expanded by alternative splicing, small nucleotide polymorphisms, post-translational modifications, and modified translation rates.

摘要

构象转换蛋白可响应细胞刺激重塑其二级和三级结构,为人们提供了一种全新的蛋白质构象空间视角。数十年来,实验证据表明蛋白质构象空间是离散的:不同的折叠由不同的氨基酸序列编码。构象转换蛋白挑战了这一假设,它将不同的不相似蛋白质折叠组相互连接,使蛋白质构象空间具有流动性。最近有三个观察结果支持了流体构象空间的概念:(1)一些氨基酸序列在具有不同二级结构的折叠之间相互转换,(2)一些天然存在的序列通过逐步突变发生了折叠转换,(3)构象转换是进化选择的,并且可能带来优势。这些观察结果表明,较小的氨基酸序列修饰可以改变蛋白质的结构和功能。因此,通过选择性剪接、小核苷酸多态性、翻译后修饰和改变翻译速度等方式,蛋白质组的结构和功能多样性可能会得到扩展。

相似文献

1
Fluid protein fold space and its implications.
Bioessays. 2023 Sep;45(9):e2300057. doi: 10.1002/bies.202300057. Epub 2023 Jul 11.
2
Design and discovery of metamorphic proteins.
Curr Opin Struct Biol. 2022 Jun;74:102380. doi: 10.1016/j.sbi.2022.102380. Epub 2022 May 10.
3
Super folds, networks, and barriers.
Proteins. 2012 Feb;80(2):463-70. doi: 10.1002/prot.23212. Epub 2011 Nov 17.
4
Local versus global fold switching in protein evolution: insight from a three-letter continuous model.
Phys Biol. 2015 Feb 23;12(2):026002. doi: 10.1088/1478-3975/12/2/026002.
5
AlphaFold2's training set powers its predictions of some fold-switched conformations.
Protein Sci. 2025 Apr;34(4):e70105. doi: 10.1002/pro.70105.
6
Metamorphic Proteins: Emergence of Dual Protein Folds from One Primary Sequence.
Biochemistry. 2017 Jun 20;56(24):2971-2984. doi: 10.1021/acs.biochem.7b00375. Epub 2017 Jun 12.
7
Extant fold-switching proteins are widespread.
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):5968-5973. doi: 10.1073/pnas.1800168115. Epub 2018 May 21.
8
NMR structures of two designed proteins with high sequence identity but different fold and function.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14412-7. doi: 10.1073/pnas.0805857105. Epub 2008 Sep 16.
10
Metamorphic proteins: the Janus proteins of structural biology.
Open Biol. 2021 Apr;11(4):210012. doi: 10.1098/rsob.210012. Epub 2021 Apr 21.

引用本文的文献

1
On the emergence of metabolism: the evolution of proteins that powered life.
Philos Trans R Soc Lond B Biol Sci. 2025 Aug 7;380(1931):20240090. doi: 10.1098/rstb.2024.0090.
2
Fold-switching proteins.
ArXiv. 2025 Jul 14:arXiv:2507.10839v1.
3
Evolving concepts of the protein universe.
iScience. 2025 Feb 13;28(3):112012. doi: 10.1016/j.isci.2025.112012. eCollection 2025 Mar 21.
4
Unveiling the cold reality of metamorphic proteins.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2422725122. doi: 10.1073/pnas.2422725122. Epub 2025 Mar 13.
6
Proteins with alternative folds reveal blind spots in AlphaFold-based protein structure prediction.
Curr Opin Struct Biol. 2025 Feb;90:102973. doi: 10.1016/j.sbi.2024.102973. Epub 2025 Jan 4.
7
Aromatic-aromatic interactions drive fold switch of GA95 and GB95 with three residue difference.
Chem Sci. 2024 Dec 18;16(4):1885-1893. doi: 10.1039/d4sc04951a. eCollection 2025 Jan 22.
8
Temperature-dependent fold-switching mechanism of the circadian clock protein KaiB.
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2412327121. doi: 10.1073/pnas.2412327121. Epub 2024 Dec 13.
10
Proteomic Evidence for Amyloidogenic Cross-Seeding in Fibrinaloid Microclots.
Int J Mol Sci. 2024 Oct 8;25(19):10809. doi: 10.3390/ijms251910809.

本文引用的文献

1
Evolutionary selection of proteins with two folds.
Nat Commun. 2023 Sep 6;14(1):5478. doi: 10.1038/s41467-023-41237-2.
2
Identification of a covert evolutionary pathway between two protein folds.
Nat Commun. 2023 Jun 1;14(1):3177. doi: 10.1038/s41467-023-38519-0.
3
Evolutionary-scale prediction of atomic-level protein structure with a language model.
Science. 2023 Mar 17;379(6637):1123-1130. doi: 10.1126/science.ade2574. Epub 2023 Mar 16.
4
Distinguishing features of fold-switching proteins.
Protein Sci. 2023 Mar;32(3):e4596. doi: 10.1002/pro.4596.
5
Design and characterization of a protein fold switching network.
Nat Commun. 2023 Jan 26;14(1):431. doi: 10.1038/s41467-023-36065-3.
6
Reversible switching between two common protein folds in a designed system using only temperature.
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2215418120. doi: 10.1073/pnas.2215418120. Epub 2023 Jan 20.
7
Opinion: Protein folds vs. protein folding: Differing questions, different challenges.
Proc Natl Acad Sci U S A. 2023 Jan 3;120(1):e2214423119. doi: 10.1073/pnas.2214423119. Epub 2022 Dec 29.
8
Creative destruction: New protein folds from old.
Proc Natl Acad Sci U S A. 2022 Dec 27;119(52):e2207897119. doi: 10.1073/pnas.2207897119. Epub 2022 Dec 19.
9
Metamorphic proteins under a computational microscope: Lessons from a fold-switching RfaH protein.
Comput Struct Biotechnol J. 2022 Oct 21;20:5824-5837. doi: 10.1016/j.csbj.2022.10.024. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验