Suppr超能文献

通过结合结构预测和机器学习方法揭示的不同端粒酶蛋白中的显著相似性。

Striking similarities in diverse telomerase proteins revealed by combining structure prediction and machine learning approaches.

作者信息

Lee Jae-Hyung, Hamilton Michael, Gleeson Colin, Caragea Cornelia, Zaback Peter, Sander Jeffry D, Li Xue, Wu Feihong, Terribilini Michael, Honavar Vasant, Dobbs Drena

机构信息

Bioinformatics & Computational Biology Program, L.H. Baker Center for Bioinformatics & Biological Statistics, Iowa State University, Ames, IA 50010, USA.

出版信息

Pac Symp Biocomput. 2008:501-12.

Abstract

Telomerase is a ribonucleoprotein enzyme that adds telomeric DNA repeat sequences to the ends of linear chromosomes. The enzyme plays pivotal roles in cellular senescence and aging, and because it provides a telomere maintenance mechanism for approximately 90% of human cancers, it is a promising target for cancer therapy. Despite its importance, a high-resolution structure of the telomerase enzyme has been elusive, although a crystal structure of an N-terminal domain (TEN) of the telomerase reverse transcriptase subunit (TERT) from Tetrahymena has been reported. In this study, we used a comparative strategy, in which sequence-based machine learning approaches were integrated with computational structural modeling, to explore the potential conservation of structural and functional features of TERT in phylogenetically diverse species. We generated structural models of the N-terminal domains from human and yeast TERT using a combination of threading and homology modeling with the Tetrahymena TEN structure as a template. Comparative analysis of predicted and experimentally verified DNA and RNA binding residues, in the context of these structures, revealed significant similarities in nucleic acid binding surfaces of Tetrahymena and human TEN domains. In addition, the combined evidence from machine learning and structural modeling identified several specific amino acids that are likely to play a role in binding DNA or RNA, but for which no experimental evidence is currently available.

摘要

端粒酶是一种核糖核蛋白酶,它将端粒DNA重复序列添加到线性染色体的末端。该酶在细胞衰老和老化过程中发挥着关键作用,并且由于它为大约90%的人类癌症提供了一种端粒维持机制,因此它是癌症治疗的一个有前景的靶点。尽管其很重要,但端粒酶的高分辨率结构一直难以获得,尽管已经报道了来自四膜虫的端粒酶逆转录酶亚基(TERT)的N端结构域(TEN)的晶体结构。在这项研究中,我们使用了一种比较策略,即将基于序列的机器学习方法与计算结构建模相结合,以探索在系统发育上不同的物种中TERT的结构和功能特征的潜在保守性。我们以四膜虫TEN结构为模板,通过穿线法和同源建模相结合的方法,生成了人类和酵母TERT的N端结构域的结构模型。在这些结构的背景下,对预测的和经实验验证的DNA和RNA结合残基进行比较分析,发现四膜虫和人类TEN结构域的核酸结合表面存在显著相似性。此外,机器学习和结构建模的综合证据确定了几个可能在结合DNA或RNA中起作用的特定氨基酸,但目前尚无实验证据。

相似文献

2
Human telomerase model shows the role of the TEN domain in advancing the double helix for the next polymerization step.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9443-8. doi: 10.1073/pnas.1015399108. Epub 2011 May 23.
3
RNA binding domain of telomerase reverse transcriptase.
Mol Cell Biol. 2001 Feb;21(4):990-1000. doi: 10.1128/MCB.21.4.990-1000.2001.
4
Template boundary definition in Tetrahymena telomerase.
Genes Dev. 2002 Feb 15;16(4):415-20. doi: 10.1101/gad.962602.
5
Template definition by Tetrahymena telomerase reverse transcriptase.
EMBO J. 2000 Aug 15;19(16):4412-22. doi: 10.1093/emboj/19.16.4412.
6
Modeling and structure function analysis of the putative anchor site of yeast telomerase.
Nucleic Acids Res. 2007;35(15):5213-22. doi: 10.1093/nar/gkm531. Epub 2007 Aug 1.
9
The telomerase essential N-terminal domain promotes DNA synthesis by stabilizing short RNA-DNA hybrids.
Nucleic Acids Res. 2015 Jun 23;43(11):5537-49. doi: 10.1093/nar/gkv406. Epub 2015 May 4.
10
Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65.
Mol Cell. 2012 Jul 13;47(1):16-26. doi: 10.1016/j.molcel.2012.05.018. Epub 2012 Jun 14.

引用本文的文献

2
Human telomerase model shows the role of the TEN domain in advancing the double helix for the next polymerization step.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9443-8. doi: 10.1073/pnas.1015399108. Epub 2011 May 23.
3
Direct involvement of the TEN domain at the active site of human telomerase.
Nucleic Acids Res. 2011 Mar;39(5):1774-88. doi: 10.1093/nar/gkq1083. Epub 2010 Nov 3.

本文引用的文献

1
RNABindR: a server for analyzing and predicting RNA-binding sites in proteins.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W578-84. doi: 10.1093/nar/gkm294. Epub 2007 May 5.
2
Protein composition of catalytically active human telomerase from immortal cells.
Science. 2007 Mar 30;315(5820):1850-3. doi: 10.1126/science.1138596.
3
The epigenetic regulation of mammalian telomeres.
Nat Rev Genet. 2007 Apr;8(4):299-309. doi: 10.1038/nrg2047.
4
Characterization of physical and functional anchor site interactions in human telomerase.
Mol Cell Biol. 2007 Apr;27(8):3226-40. doi: 10.1128/MCB.02368-06. Epub 2007 Feb 12.
5
Hallmarks of telomeres in ageing research.
J Pathol. 2007 Jan;211(2):114-23. doi: 10.1002/path.2090.
7
The biogenesis and regulation of telomerase holoenzymes.
Nat Rev Mol Cell Biol. 2006 Jul;7(7):484-94. doi: 10.1038/nrm1961.
8
Prediction of RNA binding sites in proteins from amino acid sequence.
RNA. 2006 Aug;12(8):1450-62. doi: 10.1261/rna.2197306. Epub 2006 Jun 21.
9
The structure and function of telomerase reverse transcriptase.
Annu Rev Biochem. 2006;75:493-517. doi: 10.1146/annurev.biochem.75.103004.142412.
10
Telomere length homeostasis.
Chromosoma. 2006 Dec;115(6):413-25. doi: 10.1007/s00412-006-0067-3. Epub 2006 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验