Suppr超能文献

从氨基酸序列预测蛋白质中的RNA结合位点。

Prediction of RNA binding sites in proteins from amino acid sequence.

作者信息

Terribilini Michael, Lee Jae-Hyung, Yan Changhui, Jernigan Robert L, Honavar Vasant, Dobbs Drena

机构信息

Bioinformatics and Computationa Biology, Graduate Program, Iowa State University, Ames, Iowa 50010, USA.

出版信息

RNA. 2006 Aug;12(8):1450-62. doi: 10.1261/rna.2197306. Epub 2006 Jun 21.

Abstract

RNA-protein interactions are vitally important in a wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses. We have developed a computational tool for predicting which amino acids of an RNA binding protein participate in RNA-protein interactions, using only the protein sequence as input. RNABindR was developed using machine learning on a validated nonredundant data set of interfaces from known RNA-protein complexes in the Protein Data Bank. It generates a classifier that captures primary sequence signals sufficient for predicting which amino acids in a given protein are located in the RNA-protein interface. In leave-one-out cross-validation experiments, RNABindR identifies interface residues with >85% overall accuracy. It can be calibrated by the user to obtain either high specificity or high sensitivity for interface residues. RNABindR, implementing a Naive Bayes classifier, performs as well as a more complex neural network classifier (to our knowledge, the only previously published sequence-based method for RNA binding site prediction) and offers the advantages of speed, simplicity and interpretability of results. RNABindR predictions on the human telomerase protein hTERT are in good agreement with experimental data. The availability of computational tools for predicting which residues in an RNA binding protein are likely to contact RNA should facilitate design of experiments to directly test RNA binding function and contribute to our understanding of the diversity, mechanisms, and regulation of RNA-protein complexes in biological systems. (RNABindR is available as a Web tool from http://bindr.gdcb.iastate.edu.).

摘要

RNA与蛋白质的相互作用在广泛的生物过程中至关重要,包括基因表达调控、蛋白质合成以及许多病毒的复制和组装。我们开发了一种计算工具,仅使用蛋白质序列作为输入,来预测RNA结合蛋白的哪些氨基酸参与RNA与蛋白质的相互作用。RNABindR是利用机器学习,基于蛋白质数据库中已知RNA-蛋白质复合物的经过验证的非冗余界面数据集开发的。它生成一个分类器,该分类器捕获足以预测给定蛋白质中哪些氨基酸位于RNA-蛋白质界面的一级序列信号。在留一法交叉验证实验中,RNABindR识别界面残基的总体准确率超过85%。用户可以对其进行校准,以获得对界面残基的高特异性或高敏感性。RNABindR采用朴素贝叶斯分类器,其性能与更复杂的神经网络分类器相当(据我们所知,这是之前唯一发表的基于序列的RNA结合位点预测方法),并且具有速度快、简单以及结果可解释的优点。对人类端粒酶蛋白hTERT的RNABindR预测结果与实验数据高度吻合。能够预测RNA结合蛋白中哪些残基可能与RNA接触的计算工具的出现,应有助于设计直接测试RNA结合功能的实验,并有助于我们理解生物系统中RNA-蛋白质复合物的多样性、机制和调控。(可从http://bindr.gdcb.iastate.edu.作为网络工具获取RNABindR。)

相似文献

8
PRIDB: a Protein-RNA interface database.PRIDB:一个蛋白质-核糖核酸相互作用界面数据库。
Nucleic Acids Res. 2011 Jan;39(Database issue):D277-82. doi: 10.1093/nar/gkq1108. Epub 2010 Nov 11.

引用本文的文献

本文引用的文献

3
The structure and function of telomerase reverse transcriptase.端粒酶逆转录酶的结构与功能。
Annu Rev Biochem. 2006;75:493-517. doi: 10.1146/annurev.biochem.75.103004.142412.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验