Suppr超能文献

CMARRT:一种通过整合相关结构来分析来自平铺阵列的芯片杂交数据的工具。

CMARRT: a tool for the analysis of ChIP-chip data from tiling arrays by incorporating the correlation structure.

作者信息

Kuan Pei Fen, Chun Hyonho, Keleş Sündüz

机构信息

Department of Statistics, 1300 University Avenue, University of Wisconsin, Madison, WI 53706, USA.

出版信息

Pac Symp Biocomput. 2008:515-26.

Abstract

Whole genome tiling arrays at a user specified resolution are becoming a versatile tool in genomics. Chromatin immunoprecipitation on microarrays (ChIP-chip) is a powerful application of these arrays. Although there is an increasing number of methods for analyzing ChIP-chip data, perhaps the most simple and commonly used one, due to its computational efficiency, is testing with a moving average statistic. Current moving average methods assume exchangeability of the measurements within an array. They are not tailored to deal with the issues due to array designs such as overlapping probes that result in correlated measurements. We investigate the correlation structure of data from such arrays and propose an extension of the moving average testing via a robust and rapid method called CMARRT. We illustrate the pitfalls of ignoring the correlation structure in simulations and a case study. Our approach is implemented as an R package called CMARRT and can be used with any tiling array platform.

摘要

以用户指定分辨率的全基因组平铺阵列正成为基因组学中一种通用工具。微阵列染色质免疫沉淀技术(ChIP-chip)是这些阵列的一项强大应用。尽管分析ChIP-chip数据的方法越来越多,但由于其计算效率,或许最简单且最常用的方法是使用移动平均统计量进行检验。当前的移动平均方法假定阵列内测量值具有可交换性。它们并非专门为处理因阵列设计(如导致相关测量的重叠探针)而产生的问题而设计。我们研究了此类阵列数据的相关结构,并通过一种名为CMARRT的稳健且快速的方法提出了移动平均检验的扩展。我们在模拟和一个案例研究中说明了忽略相关结构的陷阱。我们的方法实现为一个名为CMARRT的R包,可用于任何平铺阵列平台。

相似文献

6
CATCHprofiles: clustering and alignment tool for ChIP profiles.
PLoS One. 2012;7(1):e28272. doi: 10.1371/journal.pone.0028272. Epub 2012 Jan 4.
7
Parameter estimation for robust HMM analysis of ChIP-chip data.
BMC Bioinformatics. 2008 Aug 18;9:343. doi: 10.1186/1471-2105-9-343.
8
Poisson approximation for significance in genome-wide ChIP-chip tiling arrays.
Bioinformatics. 2008 Dec 15;24(24):2825-31. doi: 10.1093/bioinformatics/btn549. Epub 2008 Oct 25.
9
Unsupervised classification for tiling arrays: ChIP-chip and transcriptome.
Stat Appl Genet Mol Biol. 2011 Nov 1;10(1):/j/sagmb.2011.10.issue-1/1544-6115.1692/1544-6115.1692.xml. doi: 10.2202/1544-6115.1692.
10
HAT: hypergeometric analysis of tiling-arrays with application to promoter-GeneChip data.
BMC Bioinformatics. 2010 May 21;11:275. doi: 10.1186/1471-2105-11-275.

引用本文的文献

1
Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.
Yeast. 2017 Nov;34(11):447-458. doi: 10.1002/yea.3247. Epub 2017 Sep 26.
2
Impact of Anaerobiosis on Expression of the Iron-Responsive Fur and RyhB Regulons.
mBio. 2015 Dec 15;6(6):e01947-15. doi: 10.1128/mBio.01947-15.
3
Prenatal stress-induced programming of genome-wide promoter DNA methylation in 5-HTT-deficient mice.
Transl Psychiatry. 2014 Oct 21;4(10):e473. doi: 10.1038/tp.2014.107.
4
The Cavβ1a subunit regulates gene expression and suppresses myogenin in muscle progenitor cells.
J Cell Biol. 2014 Jun 23;205(6):829-46. doi: 10.1083/jcb.201403021. Epub 2014 Jun 16.
5
A novel method for identification and quantification of consistently differentially methylated regions.
PLoS One. 2014 May 12;9(5):e97513. doi: 10.1371/journal.pone.0097513. eCollection 2014.
6
Revealing the genetic basis of natural bacterial phenotypic divergence.
J Bacteriol. 2014 Feb;196(4):825-39. doi: 10.1128/JB.01039-13. Epub 2013 Dec 6.
7
A-clustering: a novel method for the detection of co-regulated methylation regions, and regions associated with exposure.
Bioinformatics. 2013 Nov 15;29(22):2884-91. doi: 10.1093/bioinformatics/btt498. Epub 2013 Aug 29.
8
Genome-scale analysis of escherichia coli FNR reveals complex features of transcription factor binding.
PLoS Genet. 2013 Jun;9(6):e1003565. doi: 10.1371/journal.pgen.1003565. Epub 2013 Jun 20.
9
DNA methylation mediated control of gene expression is critical for development of crown gall tumors.
PLoS Genet. 2013;9(2):e1003267. doi: 10.1371/journal.pgen.1003267. Epub 2013 Feb 7.
10
Rho and NusG suppress pervasive antisense transcription in Escherichia coli.
Genes Dev. 2012 Dec 1;26(23):2621-33. doi: 10.1101/gad.196741.112.

本文引用的文献

1
Mixture modeling for genome-wide localization of transcription factors.
Biometrics. 2007 Mar;63(1):10-21. doi: 10.1111/j.1541-0420.2005.00659.x.
2
Assessing the need for sequence-based normalization in tiling microarray experiments.
Bioinformatics. 2007 Apr 15;23(8):988-97. doi: 10.1093/bioinformatics/btm052. Epub 2007 Mar 25.
3
Identification of genes directly regulated by the oncogene ZNF217 using chromatin immunoprecipitation (ChIP)-chip assays.
J Biol Chem. 2007 Mar 30;282(13):9703-9712. doi: 10.1074/jbc.M611752200. Epub 2007 Jan 26.
4
Model-based analysis of tiling-arrays for ChIP-chip.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12457-62. doi: 10.1073/pnas.0601180103. Epub 2006 Aug 8.
5
Multiple testing methods for ChIP-Chip high density oligonucleotide array data.
J Comput Biol. 2006 Apr;13(3):579-613. doi: 10.1089/cmb.2006.13.579.
6
Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome.
Genome Res. 2006 May;16(5):595-605. doi: 10.1101/gr.4887606. Epub 2006 Apr 10.
7
ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data.
Genome Biol. 2005;6(11):R97. doi: 10.1186/gb-2005-6-11-r97. Epub 2005 Oct 19.
8
TileMap: create chromosomal map of tiling array hybridizations.
Bioinformatics. 2005 Sep 15;21(18):3629-36. doi: 10.1093/bioinformatics/bti593. Epub 2005 Jul 26.
9
A high-resolution map of active promoters in the human genome.
Nature. 2005 Aug 11;436(7052):876-80. doi: 10.1038/nature03877. Epub 2005 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验