Morris Lydia P, Conley Andrew B, Degtyareva Natalya, Jordan I King, Doetsch Paul W
Program in Genetics and Molecular Biology, Emory University Atlanta, GA, 30322, USA.
Department of Biochemistry, Emory University Atlanta, GA, 30322, USA.
Yeast. 2017 Nov;34(11):447-458. doi: 10.1002/yea.3247. Epub 2017 Sep 26.
The DNA is cells is continuously exposed to reactive oxygen species resulting in toxic and mutagenic DNA damage. Although the repair of oxidative DNA damage occurs primarily through the base excision repair (BER) pathway, the nucleotide excision repair (NER) pathway processes some of the same lesions. In addition, damage tolerance mechanisms, such as recombination and translesion synthesis, enable cells to tolerate oxidative DNA damage, especially when BER and NER capacities are exceeded. Thus, disruption of BER alone or disruption of BER and NER in Saccharomyces cerevisiae leads to increased mutations as well as large-scale genomic rearrangements. Previous studies demonstrated that a particular region of chromosome II is susceptible to chronic oxidative stress-induced chromosomal rearrangements, suggesting the existence of DNA damage and/or DNA repair hotspots. Here we investigated the relationship between oxidative damage and genomic instability utilizing chromatin immunoprecipitation combined with DNA microarray technology to profile DNA repair sites along yeast chromosomes under different oxidative stress conditions. We targeted the major yeast AP endonuclease Apn1 as a representative BER protein. Our results indicate that Apn1 target sequences are enriched for cytosine and guanine nucleotides. We predict that BER protects these sites in the genome because guanines and cytosines are thought to be especially susceptible to oxidative attack, thereby preventing large-scale genome destabilization from chronic accumulation of DNA damage. Information from our studies should provide insight into how regional deployment of oxidative DNA damage management systems along chromosomes protects against large-scale rearrangements. Copyright © 2017 John Wiley & Sons, Ltd.
细胞中的DNA持续暴露于活性氧,从而导致具有毒性和致突变性的DNA损伤。虽然氧化性DNA损伤的修复主要通过碱基切除修复(BER)途径进行,但核苷酸切除修复(NER)途径也处理一些相同的损伤。此外,损伤耐受机制,如重组和跨损伤合成,使细胞能够耐受氧化性DNA损伤,尤其是在BER和NER能力被超过时。因此,在酿酒酵母中单独破坏BER或同时破坏BER和NER会导致突变增加以及大规模基因组重排。先前的研究表明,II号染色体的一个特定区域易受慢性氧化应激诱导的染色体重排影响,这表明存在DNA损伤和/或DNA修复热点。在这里,我们利用染色质免疫沉淀结合DNA微阵列技术,研究了在不同氧化应激条件下酵母染色体上DNA修复位点,以探究氧化损伤与基因组不稳定性之间的关系。我们将主要的酵母AP内切核酸酶Apn1作为代表性的BER蛋白进行研究。我们的结果表明,Apn1的靶序列富含胞嘧啶和鸟嘌呤核苷酸。我们预测,BER保护基因组中的这些位点,因为鸟嘌呤和胞嘧啶被认为特别容易受到氧化攻击,从而防止因DNA损伤的慢性积累导致大规模基因组不稳定。我们研究获得的信息应能为沿染色体的氧化性DNA损伤管理系统的区域部署如何防止大规模重排提供见解。版权所有© 2017约翰威立父子有限公司。