Suppr超能文献

酿酒酵母在氧化应激下Apn1结合位点的全基因组图谱。

Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.

作者信息

Morris Lydia P, Conley Andrew B, Degtyareva Natalya, Jordan I King, Doetsch Paul W

机构信息

Program in Genetics and Molecular Biology, Emory University Atlanta, GA, 30322, USA.

Department of Biochemistry, Emory University Atlanta, GA, 30322, USA.

出版信息

Yeast. 2017 Nov;34(11):447-458. doi: 10.1002/yea.3247. Epub 2017 Sep 26.

Abstract

The DNA is cells is continuously exposed to reactive oxygen species resulting in toxic and mutagenic DNA damage. Although the repair of oxidative DNA damage occurs primarily through the base excision repair (BER) pathway, the nucleotide excision repair (NER) pathway processes some of the same lesions. In addition, damage tolerance mechanisms, such as recombination and translesion synthesis, enable cells to tolerate oxidative DNA damage, especially when BER and NER capacities are exceeded. Thus, disruption of BER alone or disruption of BER and NER in Saccharomyces cerevisiae leads to increased mutations as well as large-scale genomic rearrangements. Previous studies demonstrated that a particular region of chromosome II is susceptible to chronic oxidative stress-induced chromosomal rearrangements, suggesting the existence of DNA damage and/or DNA repair hotspots. Here we investigated the relationship between oxidative damage and genomic instability utilizing chromatin immunoprecipitation combined with DNA microarray technology to profile DNA repair sites along yeast chromosomes under different oxidative stress conditions. We targeted the major yeast AP endonuclease Apn1 as a representative BER protein. Our results indicate that Apn1 target sequences are enriched for cytosine and guanine nucleotides. We predict that BER protects these sites in the genome because guanines and cytosines are thought to be especially susceptible to oxidative attack, thereby preventing large-scale genome destabilization from chronic accumulation of DNA damage. Information from our studies should provide insight into how regional deployment of oxidative DNA damage management systems along chromosomes protects against large-scale rearrangements. Copyright © 2017 John Wiley & Sons, Ltd.

摘要

细胞中的DNA持续暴露于活性氧,从而导致具有毒性和致突变性的DNA损伤。虽然氧化性DNA损伤的修复主要通过碱基切除修复(BER)途径进行,但核苷酸切除修复(NER)途径也处理一些相同的损伤。此外,损伤耐受机制,如重组和跨损伤合成,使细胞能够耐受氧化性DNA损伤,尤其是在BER和NER能力被超过时。因此,在酿酒酵母中单独破坏BER或同时破坏BER和NER会导致突变增加以及大规模基因组重排。先前的研究表明,II号染色体的一个特定区域易受慢性氧化应激诱导的染色体重排影响,这表明存在DNA损伤和/或DNA修复热点。在这里,我们利用染色质免疫沉淀结合DNA微阵列技术,研究了在不同氧化应激条件下酵母染色体上DNA修复位点,以探究氧化损伤与基因组不稳定性之间的关系。我们将主要的酵母AP内切核酸酶Apn1作为代表性的BER蛋白进行研究。我们的结果表明,Apn1的靶序列富含胞嘧啶和鸟嘌呤核苷酸。我们预测,BER保护基因组中的这些位点,因为鸟嘌呤和胞嘧啶被认为特别容易受到氧化攻击,从而防止因DNA损伤的慢性积累导致大规模基因组不稳定。我们研究获得的信息应能为沿染色体的氧化性DNA损伤管理系统的区域部署如何防止大规模重排提供见解。版权所有© 2017约翰威立父子有限公司。

相似文献

1
Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.
Yeast. 2017 Nov;34(11):447-458. doi: 10.1002/yea.3247. Epub 2017 Sep 26.
2
The role of His-83 of yeast apurinic/apyrimidinic endonuclease Apn1 in catalytic incision of abasic sites in DNA.
Biochim Biophys Acta. 2015 Jun;1850(6):1297-309. doi: 10.1016/j.bbagen.2015.03.001. Epub 2015 Mar 10.
3
Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae.
DNA Repair (Amst). 2009 Mar 1;8(3):318-29. doi: 10.1016/j.dnarep.2008.11.004. Epub 2008 Dec 18.
4
Relationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic (AP) sites in DNA.
Nucleic Acids Res. 1999 Feb 15;27(4):956-62. doi: 10.1093/nar/27.4.956.
6
Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells.
Hum Mol Genet. 2012 Sep 15;21(18):4060-72. doi: 10.1093/hmg/dds230. Epub 2012 Jun 16.
10
Abasic sites in the transcribed strand of yeast DNA are removed by transcription-coupled nucleotide excision repair.
Mol Cell Biol. 2010 Jul;30(13):3206-15. doi: 10.1128/MCB.00308-10. Epub 2010 Apr 26.

引用本文的文献

1
Global Analysis of Furfural-Induced Genomic Instability Using a Yeast Model.
Appl Environ Microbiol. 2019 Aug 29;85(18). doi: 10.1128/AEM.01237-19. Print 2019 Sep 15.

本文引用的文献

1
A chemical and kinetic perspective on base excision repair of DNA.
Acc Chem Res. 2014 Apr 15;47(4):1238-46. doi: 10.1021/ar400275a. Epub 2014 Mar 19.
3
Hallmarks of cancer: the next generation.
Cell. 2011 Mar 4;144(5):646-74. doi: 10.1016/j.cell.2011.02.013.
4
Starr: Simple Tiling ARRay analysis of Affymetrix ChIP-chip data.
BMC Bioinformatics. 2010 Apr 17;11:194. doi: 10.1186/1471-2105-11-194.
5
Principles of cancer therapy: oncogene and non-oncogene addiction.
Cell. 2009 Mar 6;136(5):823-37. doi: 10.1016/j.cell.2009.02.024.
6
DNA repair in mammalian cells: Base excision repair: the long and short of it.
Cell Mol Life Sci. 2009 Mar;66(6):981-93. doi: 10.1007/s00018-009-8736-z.
7
Dynamic compartmentalization of base excision repair proteins in response to nuclear and mitochondrial oxidative stress.
Mol Cell Biol. 2009 Feb;29(3):794-807. doi: 10.1128/MCB.01357-08. Epub 2008 Nov 24.
8
Chronic oxidative DNA damage due to DNA repair defects causes chromosomal instability in Saccharomyces cerevisiae.
Mol Cell Biol. 2008 Sep;28(17):5432-45. doi: 10.1128/MCB.00307-08. Epub 2008 Jun 30.
10
Bulky DNA lesions induced by reactive oxygen species.
Chem Res Toxicol. 2008 Feb;21(2):276-81. doi: 10.1021/tx700411g. Epub 2008 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验