Suppr超能文献

CASCADE:一种用于对生物相互作用进行聚类的新型基于准全路径的网络分析算法。

CASCADE: a novel quasi all paths-based network analysis algorithm for clustering biological interactions.

作者信息

Hwang Woochang, Cho Young-Rae, Zhang Aidong, Ramanathan Murali

机构信息

Department of Computer Science and Engineering, State University of New York, Buffalo, NY 14260, USA.

出版信息

BMC Bioinformatics. 2008 Jan 29;9:64. doi: 10.1186/1471-2105-9-64.

Abstract

BACKGROUND

Quantitative characterization of the topological characteristics of protein-protein interaction (PPI) networks can enable the elucidation of biological functional modules. Here, we present a novel clustering methodology for PPI networks wherein the biological and topological influence of each protein on other proteins is modeled using the probability distribution that the series of interactions necessary to link a pair of distant proteins in the network occur within a time constant (the occurrence probability).

RESULTS

CASCADE selects representative nodes for each cluster and iteratively refines clusters based on a combination of the occurrence probability and graph topology between every protein pair. The CASCADE approach is compared to nine competing approaches. The clusters obtained by each technique are compared for enrichment of biological function. CASCADE generates larger clusters and the clusters identified have p-values for biological function that are approximately 1000-fold better than the other methods on the yeast PPI network dataset. An important strength of CASCADE is that the percentage of proteins that are discarded to create clusters is much lower than the other approaches which have an average discard rate of 45% on the yeast protein-protein interaction network.

CONCLUSION

CASCADE is effective at detecting biologically relevant clusters of interactions.

摘要

背景

蛋白质-蛋白质相互作用(PPI)网络拓扑特征的定量表征能够有助于阐明生物功能模块。在此,我们提出一种用于PPI网络的新型聚类方法,其中利用网络中连接一对远距离蛋白质所需的一系列相互作用在一个时间常数内发生的概率分布(发生概率),对每个蛋白质对其他蛋白质的生物学和拓扑影响进行建模。

结果

CASCADE为每个聚类选择代表性节点,并基于每个蛋白质对之间的发生概率和图拓扑结构的组合迭代地优化聚类。将CASCADE方法与九种竞争方法进行比较。比较每种技术获得的聚类的生物功能富集情况。CASCADE生成更大的聚类,并且在酵母PPI网络数据集上,所识别的聚类的生物功能p值比其他方法大约好1000倍。CASCADE的一个重要优势是,为创建聚类而被舍弃的蛋白质百分比远低于其他方法,在酵母蛋白质-蛋白质相互作用网络上,其他方法的平均舍弃率为45%。

结论

CASCADE在检测生物学相关的相互作用聚类方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e089/2253513/f3ae4178d391/1471-2105-9-64-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验