Suppr超能文献

一种在蛋白质-蛋白质相互作用网络中寻找功能模块和蛋白质复合物的算法。

An algorithm for finding functional modules and protein complexes in protein-protein interaction networks.

作者信息

Cui Guangyu, Chen Yu, Huang De-Shuang, Han Kyungsook

机构信息

School of Computer Science and Engineering, Inha University, Incheon 402-751, South Korea.

出版信息

J Biomed Biotechnol. 2008;2008:860270. doi: 10.1155/2008/860270.

Abstract

Biological processes are often performed by a group of proteins rather than by individual proteins, and proteins in a same biological group form a densely connected subgraph in a protein-protein interaction network. Therefore, finding a densely connected subgraph provides useful information to predict the function or protein complex of uncharacterized proteins in the highly connected subgraph. We have developed an efficient algorithm and program for finding cliques and near-cliques in a protein-protein interaction network. Analysis of the interaction network of yeast proteins using the algorithm demonstrates that 59% of the near-cliques identified by our algorithm have at least one function shared by all the proteins within a near-clique, and that 56% of the near-cliques show a good agreement with the experimentally determined protein complexes catalogued in MIPS.

摘要

生物过程通常由一组蛋白质而非单个蛋白质来执行,并且同一生物组中的蛋白质在蛋白质 - 蛋白质相互作用网络中形成一个紧密连接的子图。因此,找到一个紧密连接的子图可为预测高度连接子图中未表征蛋白质的功能或蛋白质复合物提供有用信息。我们开发了一种高效算法和程序,用于在蛋白质 - 蛋白质相互作用网络中查找团和近团。使用该算法对酵母蛋白质相互作用网络进行分析表明,我们算法识别出的近团中有59%至少具有一个近团内所有蛋白质共有的功能,并且56%的近团与MIPS中编录的实验确定的蛋白质复合物高度吻合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/764d/2278021/0ea7bd8b1b32/JBB2008-860270.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验