Krehenbrink Martin, Downie J Allan
Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.
BMC Genomics. 2008 Jan 29;9:55. doi: 10.1186/1471-2164-9-55.
Proteins secreted by bacteria play an important role in infection of eukaryotic hosts. Rhizobia infect the roots of leguminous plants and establish a mutually beneficial symbiosis. Proteins secreted during the infection process by some rhizobial strains can influence infection and modify the plant defence signalling pathways. The aim of this study was to systematically analyse protein secretion in the recently sequenced strain Rhizobium leguminosarum bv. viciae 3841.
Similarity searches using defined protein secretion systems from other Gram-negative bacteria as query sequences revealed that R. l. bv. viciae 3841 has ten putative protein secretion systems. These are the general export pathway (GEP), a twin-arginine translocase (TAT) secretion system, four separate Type I systems, one putative Type IV system and three Type V autotransporters. Mutations in genes encoding each of these (except the GEP) were generated, but only mutations affecting the PrsDE (Type I) and TAT systems were observed to affect the growth phenotype and the profile of proteins in the culture supernatant. Bioinformatic analysis and mass fingerprinting of tryptic fragments of culture supernatant proteins identified 14 putative Type I substrates, 12 of which are secreted via the PrsDE, secretion system. The TAT mutant was defective for the symbiosis, forming nodules incapable of nitrogen fixation.
None of the R. l. bv. viciae 3841 protein secretion systems putatively involved in the secretion of proteins to the extracellular space (Type I, Type IV, Type V) is required for establishing the symbiosis with legumes. The PrsDE (Type I) system was shown to be the major route of protein secretion in non-symbiotic cells and to secrete proteins of widely varied size and predicted function. This is in contrast to many Type I systems from other bacteria, which typically secrete specific substrates encoded by genes often localised in close proximity to the genes encoding the secretion system itself.
细菌分泌的蛋白质在真核宿主感染过程中发挥重要作用。根瘤菌感染豆科植物的根部并建立互利共生关系。一些根瘤菌菌株在感染过程中分泌的蛋白质可影响感染并改变植物防御信号通路。本研究的目的是系统分析最近测序的豌豆根瘤菌蚕豆生物型3841菌株中的蛋白质分泌情况。
使用来自其他革兰氏阴性细菌的特定蛋白质分泌系统作为查询序列进行相似性搜索,结果显示蚕豆根瘤菌蚕豆生物型3841有十个假定的蛋白质分泌系统。这些系统包括一般输出途径(GEP)、双精氨酸转运体(TAT)分泌系统、四个独立的I型系统、一个假定的IV型系统和三个V型自转运蛋白。对编码这些系统(GEP除外)的基因进行了突变,但仅观察到影响PrsDE(I型)和TAT系统的突变会影响生长表型和培养上清液中的蛋白质谱。对培养上清液蛋白质的胰蛋白酶片段进行生物信息学分析和质谱指纹图谱分析,鉴定出14个假定的I型底物,其中12个通过PrsDE分泌系统分泌。TAT突变体在共生方面存在缺陷,形成的根瘤无法进行固氮。
与豆科植物建立共生关系不需要假定参与将蛋白质分泌到细胞外空间的任何蚕豆根瘤菌蚕豆生物型3841蛋白质分泌系统(I型、IV型、V型)。PrsDE(I型)系统被证明是非共生细胞中蛋白质分泌的主要途径,可分泌大小和预测功能差异很大的蛋白质。这与其他细菌的许多I型系统形成对比,其他细菌的I型系统通常分泌由通常位于编码分泌系统本身的基因附近的基因编码的特定底物。