Kubo Minoru, Uchida Takeshi, Nakashima Satoru, Kitagawa Teizo
Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan.
Appl Spectrosc. 2008 Jan;62(1):30-7. doi: 10.1366/000370208783412573.
A subnanosecond time-resolved ultraviolet (UV) resonance Raman system has been developed to study protein structural dynamics. The system is based on a 1 kHz Nd:YLF-pumped Ti:Sapphire regenerative amplifier with harmonic generation that can deliver visible (412, 440, 458, and 488 nm) and UV (206, 220, 229, and 244 nm) pulses. A subnanosecond (0.2 ns) tunable near-infrared pulse from a custom-made Ti:Sapphire oscillator is used to seed the regenerative amplifier. A narrow linewidth of the subnanosecond pulse offers the advantage of high resolution of UV resonance Raman spectra, which is critical to obtain site-specific information on protein structures. By combination with a 1 m single spectrograph equipped with a 3600 grooves/mm holographic grating and a custom-made prism prefilter, the present system achieves excellent spectral (<10 cm(-1)) and frequency (approximately 1 cm(-1)) resolutions with a relatively high temporal resolution (<0.5 ns). We also report the application of this system to two heme proteins, hemoglobin A and CooA, with the 440 nm pump and 220 nm probe wavelengths. For hemoglobin A, a structural change during the transition to the earliest intermediate upon CO photodissociation is successfully observed, specifically, nanosecond cleavage of the A-E interhelical hydrogen bonds within each subunit at Trpalpha14 and Trpbeta15 residues. For CooA, on the other hand, rapid structural distortion (<0.5 ns) by CO photodissociation and nanosecond structural relaxation following CO geminate recombination are observed through the Raman bands of Phe and Trp residues located near the heme. These results demonstrate the high potential of this instrument to detect local protein motions subsequent to photoreactions in their active sites.
已开发出一种亚纳秒时间分辨紫外(UV)共振拉曼系统,用于研究蛋白质结构动力学。该系统基于一台1 kHz的钕:钇铝石榴石泵浦的钛:蓝宝石再生放大器,通过谐波产生可输出可见光(412、440、458和488 nm)和紫外光(206、220、229和244 nm)脉冲。来自定制钛:蓝宝石振荡器的亚纳秒(0.2 ns)可调谐近红外脉冲用于为再生放大器注入种子光。亚纳秒脉冲的窄线宽为紫外共振拉曼光谱提供了高分辨率优势,这对于获取蛋白质结构的位点特异性信息至关重要。通过与配备3600线/mm全息光栅和定制棱镜预滤器的1 m单光栅光谱仪相结合,本系统实现了出色的光谱分辨率(<10 cm⁻¹)和频率分辨率(约1 cm⁻¹),同时具有相对较高的时间分辨率(<0.5 ns)。我们还报告了该系统在两种血红素蛋白血红蛋白A和一氧化碳脱氢酶激活蛋白(CooA)上的应用,泵浦波长为440 nm,探测波长为220 nm。对于血红蛋白A,成功观察到在CO光解离后向最早中间体转变过程中的结构变化,具体而言,每个亚基中位于Trpα14和Trpβ15残基处的A-E螺旋间氢键在纳秒级断裂。另一方面,对于CooA,通过位于血红素附近的苯丙氨酸和色氨酸残基的拉曼谱带,观察到CO光解离导致的快速结构畸变(<0.5 ns)以及CO双分子复合后的纳秒级结构弛豫。这些结果表明该仪器在检测光反应后其活性位点处的局部蛋白质运动方面具有很高的潜力。