CNRS-ESE-UPS, Gif-sur-Yvette.
IEEE Trans Med Imaging. 1988;7(4):345-54. doi: 10.1109/42.14518.
The authors propose a Bayesian approach with maximum-entropy (ME) priors to reconstruct an object from either the Fourier domain data (the Fourier transform of diffracted field measurements) in the case of diffraction tomography, or directly from the original projection data in the case of X-ray tomography. The objective function obtained is composed of a quadratic term resulting from chi(2) statistics and an entropy term that is minimized using variational techniques and a conjugate-gradient iterative method. The computational cost and practical implementation of the algorithm are discussed. Some simulated results in X-ray and diffraction tomography are given to compare this method to the classical ones.
作者提出了一种贝叶斯方法,使用最大熵 (ME) 先验来从衍射层析成像的傅里叶域数据(衍射场测量的傅里叶变换)中,或者从 X 射线层析成像的原始投影数据中重建物体。得到的目标函数由来自卡方统计的二次项和熵项组成,熵项使用变分技术和共轭梯度迭代方法最小化。讨论了算法的计算成本和实际实现。给出了 X 射线和衍射层析成像中的一些模拟结果,以将该方法与经典方法进行比较。