Cardolaccia Thomas, Li Yongjun, Schanze Kirk S
Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, USA.
J Am Chem Soc. 2008 Feb 27;130(8):2535-45. doi: 10.1021/ja0765316. Epub 2008 Jan 31.
The series of platinum acetylide oligomers (PAOs) with the general structure trans,trans-[(RO)3Ph-C[triple bond]C-Pt(PMe3)2-C[triple bond]C-(Ar)-C[triple bond]C-Pt(PMe3)2-C[triple bond]C-Ph(OR)3], where Ar = 1,4-phenylene, 2,5-thienylene, or bis-2,5-(S-2-methylbutoxy)-1,4-phenylene and R = n-C12H25 gel hydrocarbon solvents at concentrations above 1 mM. Gelation is thermally reversible (T(gel-sol) approximately 40-50 degrees C), and it occurs due to aggregation of the PAOs resulting in the formation of a fibrous network that is observed for dried gels imaged by TEM. The influence of aggregation/gelation on the photophysical properties of the PAOs is explored in detail. Aggregation induces a significant blue shift in the oligomers' absorption spectra, and the shift is attributed to exciton interactions arising from H-aggregation of the chromophores. Strong circular dichroism (CD) is observed for gelled solutions of a PAO substituted with homochiral S-2-methylbutoxy side chains on the central phenylene unit. The CD is attributed to formation of a chiral supramolecular aggregate structure. The PAOs are phosphorescent at ambient temperature in solution and in the aggregate/gel state. The phosphorescence band is blue-shifted ca. 20 nm in the aggregate/gel, and the shift is assigned to emission from an unrelaxed conformation of the triplet excited state. Phosphorescence spectroscopy of mixed aggregate/gels consisting of a triplet donor/host oligomer (Ar = 1,4-phenylene) doped with low concentrations of an acceptor/trap oligomer (Ar = 2,5-thienylene) indicates that energy transfer occurs efficiently in the aggregates. Triplet energy transfer involves exciton diffusion among the host chromophores followed by Dexter exchange energy transfer to the trap chromophore.
一系列具有通式trans,trans-[(RO)3Ph-C≡C-Pt(PMe3)2-C≡C-(Ar)-C≡C-Pt(PMe3)2-C≡C-Ph(OR)3]的铂乙炔低聚物(PAOs),其中Ar = 1,4-亚苯基、2,5-噻吩亚基或双-2,5-(S-2-甲基丁氧基)-1,4-亚苯基,R = n-C12H25,在浓度高于1 mM时能使烃类溶剂凝胶化。凝胶化是热可逆的(T(凝胶-溶胶)约为40 - 50摄氏度),它是由于PAOs聚集导致形成纤维网络而发生的,通过透射电子显微镜(TEM)成像观察干燥凝胶时可以看到这种网络。详细研究了聚集/凝胶化对PAOs光物理性质的影响。聚集导致低聚物吸收光谱发生显著蓝移,这种蓝移归因于发色团H-聚集产生的激子相互作用。对于在中心亚苯基单元上被同手性S-2-甲基丁氧基侧链取代的PAO的凝胶化溶液,观察到强烈的圆二色性(CD)。这种CD归因于手性超分子聚集体结构的形成。PAOs在溶液以及聚集/凝胶状态下的环境温度下都能产生磷光。磷光带在聚集/凝胶状态下蓝移约20 nm,这种蓝移归因于三重激发态未弛豫构象的发射。由低浓度受体/陷阱低聚物(Ar = 2,5-噻吩亚基)掺杂的三重供体/主体低聚物(Ar = 1,4-亚苯基)组成的混合聚集/凝胶的磷光光谱表明,能量转移在聚集体中有效发生。三重态能量转移涉及主体发色团之间的激子扩散,随后通过德克斯特交换能量转移到陷阱发色团。