Suppr超能文献

移动弹性线的粗糙度:裂纹和湿润前沿。

Roughness of moving elastic lines: crack and wetting fronts.

作者信息

Katzav E, Adda-Bedia M, Ben Amar M, Boudaoud A

机构信息

Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, CNRS UMR 8550, 24 rue Lhomond, 75231 Paris Cedex 05, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 1):051601. doi: 10.1103/PhysRevE.76.051601. Epub 2007 Nov 16.

Abstract

We investigate propagating fronts in disordered media that belong to the universality class of wetting contact lines and planar tensile crack fronts. We derive from first principles their nonlinear equations of motion, using the generalized Griffith criterion for crack fronts and three standard mobility laws for contact lines. Then we study their roughness using the self-consistent expansion. When neglecting the irreversibility of fracture and wetting processes, we find a possible dynamic rough phase with a roughness exponent of zeta=1/2 and a dynamic exponent of z=2. When including the irreversibility, we conclude that the front propagation can become history dependent, and thus we consider the value zeta=1/2 as a lower bound for the roughness exponent. Interestingly, for propagating contact line in wetting, where irreversibility is weaker than in fracture, the experimental results are close to 0.5, while for fracture the reported values of 0.55-0.65 are higher.

摘要

我们研究了无序介质中的传播前沿,这些前沿属于润湿接触线和平面拉伸裂纹前沿的普适类。我们从第一性原理推导出它们的非线性运动方程,使用裂纹前沿的广义格里菲斯准则和接触线的三个标准迁移率定律。然后我们使用自洽展开研究它们的粗糙度。当忽略断裂和润湿过程的不可逆性时,我们发现了一个可能的动态粗糙相,其粗糙度指数为ζ = 1/2,动态指数为z = 2。当考虑不可逆性时,我们得出前沿传播可能变得依赖历史的结论,因此我们将ζ = 1/2的值视为粗糙度指数的下限。有趣的是,对于润湿中传播的接触线,其不可逆性比断裂中的弱,实验结果接近0.5,而对于断裂,报道的0.55 - 0.65的值更高。

相似文献

1
Roughness of moving elastic lines: crack and wetting fronts.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 1):051601. doi: 10.1103/PhysRevE.76.051601. Epub 2007 Nov 16.
2
Roughness of interfacial crack fronts: stress-weighted percolation in the damage zone.
Phys Rev Lett. 2003 Jan 31;90(4):045505. doi: 10.1103/PhysRevLett.90.045505.
3
Second-order variation in elastic fields of a tensile planar crack with a curved front.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 2):035106. doi: 10.1103/PhysRevE.73.035106. Epub 2006 Mar 30.
4
Universality classes in constrained crack growth.
Phys Rev Lett. 2013 Sep 27;111(13):135502. doi: 10.1103/PhysRevLett.111.135502. Epub 2013 Sep 24.
5
On universality of scaling law describing roughness of triple line.
Eur Phys J E Soft Matter. 2015 Jan;38(1):2. doi: 10.1140/epje/i2015-15002-y. Epub 2015 Jan 28.
6
Nonuniversality of roughness exponent of quasistatic fracture surfaces.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021121. doi: 10.1103/PhysRevE.85.021121. Epub 2012 Feb 15.
7
Roughness at the depinning threshold for a long-range elastic string.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Feb;65(2 Pt 2):025101. doi: 10.1103/PhysRevE.65.025101. Epub 2002 Jan 23.
8
Can nonlinear elasticity explain contact-line roughness at depinning?
Phys Rev Lett. 2006 Jan 13;96(1):015702. doi: 10.1103/PhysRevLett.96.015702. Epub 2006 Jan 6.
9
Anomalous scaling of mortar fracture surfaces.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 2):016136. doi: 10.1103/PhysRevE.71.016136. Epub 2005 Jan 26.
10
Stability and roughness of tensile cracks in disordered materials.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052402. doi: 10.1103/PhysRevE.88.052402. Epub 2013 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验