Katzav E, Adda-Bedia M
Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom.
Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Paris 6, Université Paris Diderot, CNRS, 24 rue Lhomond, 75005 Paris, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052402. doi: 10.1103/PhysRevE.88.052402. Epub 2013 Nov 11.
We study the stability and roughness of propagating cracks in heterogeneous brittle two-dimensional elastic materials. We begin by deriving an equation of motion describing the dynamics of such a crack in the framework of linear elastic fracture mechanics, based on the Griffith criterion and the principle of local symmetry. This result allows us to extend the stability analysis of Cotterell and Rice [B. Cotterell and J. R. Rice, Int. J. Fract. 16, 155 (1980)] to disordered materials. In the stable regime we find stochastic crack paths. Using tools of statistical physics, we obtain the power spectrum of these paths and their probability distribution function and conclude that they do not exhibit self-affinity. We show that a real-space fractal analysis of these paths can lead to the wrong conclusion that the paths are self-affine. To complete the picture, we unravel a systematic bias in such real-space methods and thus contribute to the general discussion of reliability of self-affine measurements.
我们研究了非均匀脆性二维弹性材料中扩展裂纹的稳定性和粗糙度。我们首先基于格里菲斯准则和局部对称性原理,在线性弹性断裂力学框架下推导了描述此类裂纹动力学的运动方程。这一结果使我们能够将科特雷尔和赖斯[B. 科特雷尔和J. R. 赖斯,《国际断裂杂志》16, 155 (1980)]的稳定性分析扩展到无序材料。在稳定状态下,我们发现了随机裂纹路径。使用统计物理工具,我们获得了这些路径的功率谱及其概率分布函数,并得出它们不表现出自相似性的结论。我们表明,对这些路径进行实空间分形分析可能会得出路径是自相似的错误结论。为了完善这一图景,我们揭示了此类实空间方法中的系统偏差,从而为自相似测量可靠性的一般讨论做出贡献。