Nawroth A P, Peinke J, Kleinhans D, Friedrich R
Institut for Physics, Carl-von-Ossietzky University Oldenburg, D-26111 Oldenburg, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 2):056102. doi: 10.1103/PhysRevE.76.056102. Epub 2007 Nov 5.
An improved method for the description of hierarchical complex systems by means of a Fokker-Planck equation is presented. In particular the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm for constraint problems is used to minimize the distance between the numerical solutions of the Fokker-Planck equation and the empirical probability density functions and thus to estimate properly the drift and diffusion term of the Fokker-Planck equation. The optimization routine is applied to a time series of velocity measurements obtained from a turbulent helium gas jet in order to demonstrate the benefits and to quantify the improvements of this optimization routine.
提出了一种通过福克-普朗克方程描述分层复杂系统的改进方法。特别地,使用用于约束问题的有限记忆布罗伊登-弗莱彻-戈德法布-香农算法来最小化福克-普朗克方程的数值解与经验概率密度函数之间的距离,从而正确估计福克-普朗克方程的漂移项和扩散项。将该优化程序应用于从湍流氦气射流获得的速度测量时间序列,以证明其优点并量化该优化程序的改进。