Chin Siu A
Department of Physics, Texas A&M University, College Station, Texas 77843, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 2):056708. doi: 10.1103/PhysRevE.76.056708. Epub 2007 Nov 29.
Since the kinetic and potential energy terms of the real-time nonlinear Schrödinger equation can each be solved exactly, the entire equation can be solved to any order via splitting algorithms. We verified the fourth-order convergence of some well-known algorithms by solving the Gross-Pitaevskii equation numerically. All such splitting algorithms suffer from a latent numerical instability even when the total energy is very well conserved. A detail error analysis reveals that the noise, or elementary excitations of the nonlinear Schrödinger equation, obeys the Bogoliubov spectrum and the instability is due to the exponential growth of high-wave-number noises caused by the splitting process. For a continuum wave function, this instability is unavoidable no matter how small the time step. For a discrete wave function, the instability can be avoided only for Deltatkmax2 < or =2pi, where kmax=pi/Deltax.
由于实时非线性薛定谔方程的动能项和势能项都可以精确求解,因此可以通过分裂算法将整个方程求解到任意阶数。我们通过数值求解格罗斯 - 皮塔耶夫斯基方程验证了一些著名算法的四阶收敛性。所有这些分裂算法都存在潜在的数值不稳定性,即使总能量守恒得很好。详细的误差分析表明,非线性薛定谔方程的噪声或基本激发服从博戈留波夫谱,并且不稳定性是由分裂过程导致的高波数噪声的指数增长引起的。对于连续波函数,无论时间步长多么小,这种不稳定性都是不可避免的。对于离散波函数,只有当(\Delta t k_{max}^2 \leq 2\pi)时才能避免不稳定性,其中(k_{max} = \pi / \Delta x)。