Suppr超能文献

一个广义非线性薛定谔方程的呼吸子和 rogue 波解

Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation.

作者信息

Wang L H, Porsezian K, He J S

机构信息

Department of Mathematics, Ningbo University, Ningbo, Zhejiang 315211, PR China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):053202. doi: 10.1103/PhysRevE.87.053202. Epub 2013 May 30.

Abstract

In this paper, using the Darboux transformation, we demonstrate the generation of first-order breather and higher-order rogue waves from a generalized nonlinear Schrödinger equation with several higher-order nonlinear effects representing femtosecond pulse propagation through nonlinear silica fiber. The same nonlinear evolution equation can also describe the soliton-type nonlinear excitations in classical Heisenberg spin chain. Such solutions have a parameter γ(1), denoting the strength of the higher-order effects. From the numerical plots of the rational solutions, the compression effects of the breather and rogue waves produced by γ(1) are discussed in detail.

摘要

在本文中,我们利用达布变换,从一个包含若干高阶非线性效应的广义非线性薛定谔方程出发,证明了一阶呼吸子和高阶 rogue 波的产生,该方程描述了飞秒脉冲在非线性石英光纤中的传播。同一个非线性演化方程也能描述经典海森堡自旋链中的孤子型非线性激发。这类解有一个参数γ(1),表示高阶效应的强度。从有理解的数值图中,详细讨论了γ(1)产生的呼吸子和 rogue 波的压缩效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验