Suppr超能文献

棋盘势中的三次-五次孤子

Cubic-quintic solitons in the checkerboard potential.

作者信息

Driben Rodislav, Malomed Boris A, Gubeskys Arthur, Zyss Joseph

机构信息

Laboratoire de Photonique Quantique et Moléculaire, CNRS, Ecole Normale Supérieure de Cachan, UMR 8537, 94235 Cachan, France.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 2):066604. doi: 10.1103/PhysRevE.76.066604. Epub 2007 Dec 7.

Abstract

We introduce a two-dimensional (2D) model which combines a checkerboard potential, alias the Kronig-Penney (KP) lattice, with the self-focusing cubic and self-defocusing quintic nonlinear terms. The beam-splitting mechanism and soliton multistability are explored in this setting, following the recently considered 1D version of the model. Families of single- and multi-peak solitons (in particular, five- and nine-peak species naturally emerge in the 2D setting) are found in the semi-infinite gap, with both branches of bistable families being robust against perturbations. For single-peak solitons, the variational approximation (VA) is developed, providing for a qualitatively correct description of the transition from monostability to the bistability. 2D solitons found in finite band gaps are unstable. Also constructed are two different species of stable vortex solitons, arranged as four-peak patterns ("oblique" and "straight" ones). Unlike them, compact "crater-shaped" vortices are unstable, transforming themselves into randomly walking fundamental beams.

摘要

我们引入了一个二维(2D)模型,该模型将棋盘势(即克勒尼希 - 彭尼(KP)晶格)与自聚焦三次项和自散焦五次项非线性相结合。在此设置下,按照最近考虑的该模型的一维版本,研究了光束分裂机制和孤子多重稳定性。在半无限能隙中发现了单峰和多峰孤子族(特别是在二维设置中自然出现的五峰和九峰种类),双稳态族的两个分支对微扰都具有鲁棒性。对于单峰孤子,发展了变分近似(VA),它对从单稳态到双稳态的转变提供了定性正确的描述。在有限带隙中发现的二维孤子是不稳定的。还构造了两种不同种类的稳定涡旋孤子,排列成四峰模式(“倾斜”和“直线”模式)。与它们不同的是,紧凑的“火山口形”涡旋是不稳定的,会转变为随机游走的基模光束。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验