Suppr超能文献

三次-五次模型中三维孤子的相互作用

Interactions of three-dimensional solitons in the cubic-quintic model.

作者信息

Burlak Gennadiy, Malomed Boris A

机构信息

Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.

Department of Physical Electronics, School of Electric Engineering, Faculty of Engineering, and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

Chaos. 2018 Jun;28(6):063121. doi: 10.1063/1.5034361.

Abstract

We report results of a systematic numerical analysis of interactions between three-dimensional (3D) fundamental solitons, performed in the framework of the nonlinear Schrödinger equation (NLSE) with the cubic-quintic (CQ) nonlinearity, combining the self-focusing and defocusing terms. The 3D NLSE with the CQ terms may be realized in terms of spatiotemporal propagation of light in nonlinear optical media, and in Bose-Einstein condensates, provided that losses may be neglected. The first part of the work addresses interactions between identical fundamental solitons, with phase shift φ between them, separated by a finite distance in the free space. The outcome strongly changes with the variation of φ: in-phase solitons with φ = 0, or with sufficiently small φ, merge into a single fundamental soliton, with weak residual oscillations in it (in contrast to the merger into a strongly oscillating breather, which is exhibited by the 1D version of the same setting), while the choice of φ = π leads to fast separation between mutually repelling solitons. At intermediate values of φ, such as φ = π/2, the interaction is repulsive too, breaking the symmetry between the initially identical fundamental solitons, there appearing two solitons with different total energies (norms). The symmetry-breaking effect is qualitatively explained, similar to how it was done previously for 1D solitons. In the second part of the work, a pair of fundamental solitons trapped in a 2D potential is considered. It is demonstrated that they may form a slowly rotating robust "molecule," if initial kicks are applied to them in opposite directions, perpendicular to the line connecting their centers.

摘要

我们报告了在具有立方 - 五次(CQ)非线性的非线性薛定谔方程(NLSE)框架下进行的三维(3D)基本孤子相互作用的系统数值分析结果,该方程结合了自聚焦和散焦项。具有CQ项的3D NLSE可以通过光在非线性光学介质中的时空传播以及玻色 - 爱因斯坦凝聚体来实现,前提是可以忽略损耗。工作的第一部分研究了相同基本孤子之间的相互作用,它们之间存在相位差φ,在自由空间中相隔有限距离。结果会随着φ的变化而强烈改变:当φ = 0或φ足够小时的同相孤子会合并成一个单一的基本孤子,其中有微弱的残余振荡(与合并成强振荡呼吸子形成对比,在相同设置的一维版本中会出现这种情况),而选择φ = π会导致相互排斥的孤子快速分离。在φ的中间值,例如φ = π/2时,相互作用也是排斥的,打破了最初相同基本孤子之间的对称性,会出现两个总能量(范数)不同的孤子。类似于之前对一维孤子的解释,对这种对称性破缺效应进行了定性说明。在工作的第二部分,考虑了一对被困在二维势中的基本孤子。结果表明,如果以相反方向、垂直于连接它们中心的直线对它们施加初始冲量,它们可能会形成一个缓慢旋转的稳定“分子”。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验