Louvel Hélène, Betton Jean-Michel, Picardeau Mathieu
Unité de Biologie des Spirochètes, Institut Pasteur, Paris, France.
BMC Microbiol. 2008 Jan 30;8:25. doi: 10.1186/1471-2180-8-25.
Heme is typically a major iron source for bacteria, but little is known about how bacteria of the Leptospira genus, composed of both saprophytic and pathogenic species, access heme.
In this study, we analysed a two-component system of the saprophyte Leptospira biflexa. In vitro phosphorylation and site-directed mutagenesis assays showed that Hklep is a histidine kinase which, after autophosphorylation of a conserved histidine, transfers the phosphate to an essential aspartate of the response regulator Rrlep. Hklep/Rrlep two-component system mutants were generated in L. biflexa. The mutants could only grow in medium supplemented with hemin or delta-aminolevulinic acid (ALA). In the pathogen L. interrogans, the hklep and rrlep orthologous genes are located between hemE and hemL genes, which encode proteins involved in heme biosynthesis. The L. biflexa hklep mutant could be complemented with a replicative plasmid harbouring the L. interrogans orthologous gene, suggesting that these two-component systems are functionally similar. By real-time quantitative reverse transcription-PCR, we also observed that this two-component system might influence the expression of heme biosynthetic genes.
These findings demonstrate that the Hklep/Rrlep regulatory system is critical for the in vitro growth of L. biflexa, and suggest that this two-component system is involved in a complex mechanism that regulates the heme biosynthetic pathway.
血红素通常是细菌的主要铁源,但对于由腐生菌和病原菌组成的钩端螺旋体属细菌如何获取血红素,人们了解甚少。
在本研究中,我们分析了腐生型双曲钩端螺旋体的一个双组分系统。体外磷酸化和定点诱变试验表明,Hklep是一种组氨酸激酶,在保守组氨酸自磷酸化后,将磷酸基团转移至应答调节因子Rrlep的一个必需天冬氨酸残基上。在双曲钩端螺旋体中构建了Hklep/Rrlep双组分系统突变体。这些突变体只能在添加了血红素或δ-氨基乙酰丙酸(ALA)的培养基中生长。在病原菌问号钩端螺旋体中,hklep和rrlep直系同源基因位于hemE和hemL基因之间,这两个基因编码参与血红素生物合成的蛋白质。双曲钩端螺旋体hklep突变体可以用携带问号钩端螺旋体直系同源基因的复制质粒进行互补,这表明这两个双组分系统在功能上相似。通过实时定量逆转录PCR,我们还观察到这个双组分系统可能影响血红素生物合成基因的表达。
这些发现表明,Hklep/Rrlep调控系统对双曲钩端螺旋体的体外生长至关重要,并表明这个双组分系统参与了调节血红素生物合成途径的复杂机制。