Martí R, Martí J, Freixenet J, Zwiggelaar R, Vilanova J C, Barceló J
Computer Vision and Robotics Group, University of Girona, Campus Montilivi, Edifici P-IV, Av. Lluís Santaló, s/n, 17071 Girona, Spain.
Ultrasonics. 2008 Jul;48(3):169-81. doi: 10.1016/j.ultras.2007.11.010. Epub 2007 Dec 23.
The paper presents and evaluates a speckle detection method for B-scan images. This is a fully automatic method and does not require information about the sensor parameters, which is often missing in retrospective studies. The characterization and posterior detection of speckle noise in ultrasound (US) has been regarded as an important research topic in US imaging, for improving signal-to-noise ratio by removing speckle noise and for exploiting speckle correlation information. Most of the existing methods require either manual intervention, the need to know sensor parameters or are based on statistical models which often do not generalize well to B-scans of different imaging areas. The proposed method aims to overcome those limitations. The main novelty of this work is to show that speckle detection can be improved based on finding optimally discriminant low order speckle statistics. In addition, and in contrast with other approaches the presented method is fully automatic and can be efficiently implemented to B-scan images. The method detects speckle patches using an ellipsoid discriminant function which classifies patches based on features extracted from optimally discriminant low order moments of the uncompressed intensity B-scan information. In addition, if the uncompressed signal is not available, we propose and evaluate a method for the estimation of this factor. The computation of low order moments using an optimality criteria, the decompression factor estimation and other key aspects of the method are quantitatively evaluated using both simulated and real (phantom and in vivo) data. Speckle detection results are obtained using again phantom and in vivo studies which show the validity of our approach. In addition, speckle probability images (SPI) are presented which provide valuable information about the distribution of speckle and non-speckle areas in an image. The presented evaluation and results show the effectiveness of our approach. In particular, the need for using discriminant analysis to determine the optimal discriminant power of the statistical moments and that this optimal value strongly depends on the characteristics and imaged tissues in the B-scan data.
本文提出并评估了一种用于B超图像的散斑检测方法。这是一种全自动方法,不需要传感器参数信息,而回顾性研究中常常缺少这些信息。超声(US)图像中散斑噪声的特征描述和后续检测一直被视为US成像中的一个重要研究课题,目的是通过去除散斑噪声来提高信噪比,并利用散斑相关信息。现有的大多数方法要么需要人工干预,要么需要知道传感器参数,要么基于统计模型,而这些模型往往不能很好地推广到不同成像区域的B超图像。所提出的方法旨在克服这些局限性。这项工作的主要新颖之处在于表明,基于找到最优判别性的低阶散斑统计量,可以改进散斑检测。此外,与其他方法不同的是,所提出的方法是全自动的,并且可以有效地应用于B超图像。该方法使用椭圆判别函数检测散斑块,该函数根据从未压缩强度B超信息的最优判别低阶矩中提取的特征对块进行分类。此外,如果未压缩信号不可用,我们提出并评估了一种估计该因子的方法。使用最优性准则计算低阶矩、解压缩因子估计以及该方法的其他关键方面,均使用模拟数据和真实(体模和体内)数据进行了定量评估。再次通过体模和体内研究获得散斑检测结果,这些结果证明了我们方法的有效性。此外,还给出了散斑概率图像(SPI),它提供了关于图像中散斑和非散斑区域分布的有价值信息。所给出的评估和结果表明了我们方法的有效性。特别是,需要使用判别分析来确定统计矩的最优判别能力,并且这个最优值强烈依赖于B超数据中的特征和成像组织。