Liu Xiuwen, Wang DeLiang
Dept. of Comput. Sci., Florida State Univ., Tallahassee, FL 32306-4530, USA.
IEEE Trans Image Process. 2003;12(6):661-70. doi: 10.1109/TIP.2003.812327.
Based on a local spatial/frequency representation,we employ a spectral histogram as a feature statistic for texture classification. The spectral histogram consists of marginal distributions of responses of a bank of filters and encodes implicitly the local structure of images through the filtering stage and the global appearance through the histogram stage. The distance between two spectral histograms is measured using chi(2)-statistic. The spectral histogram with the associated distance measure exhibits several properties that are necessary for texture classification. A filter selection algorithm is proposed to maximize classification performance of a given dataset. Our classification experiments using natural texture images reveal that the spectral histogram representation provides a robust feature statistic for textures and generalizes well. Comparisons show that our method produces a marked improvement in classification performance. Finally we point out the relationships between existing texture features and the spectral histogram, suggesting that the latter may provide a unified texture feature.
基于局部空间/频率表示,我们采用频谱直方图作为纹理分类的特征统计量。频谱直方图由一组滤波器响应的边际分布组成,通过滤波阶段隐式编码图像的局部结构,并通过直方图阶段编码全局外观。两个频谱直方图之间的距离使用卡方统计量来测量。具有相关距离度量的频谱直方图展现出纹理分类所需的几个特性。提出了一种滤波器选择算法,以最大化给定数据集的分类性能。我们使用自然纹理图像进行的分类实验表明,频谱直方图表示为纹理提供了一种稳健的特征统计量,并且具有良好的泛化能力。比较结果表明,我们的方法在分类性能上有显著提高。最后,我们指出了现有纹理特征与频谱直方图之间的关系,表明后者可能提供一种统一的纹理特征。