Suppr超能文献

基于氡表示的纹理分类特征描述符。

Radon representation-based feature descriptor for texture classification.

作者信息

Liu Guangcan, Lin Zhouchen, Yu Yong

机构信息

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

IEEE Trans Image Process. 2009 May;18(5):921-8. doi: 10.1109/TIP.2009.2013072. Epub 2009 Mar 16.

Abstract

In this paper, we aim to handle the intraclass variation resulting from the geometric transformation and the illumination change for more robust texture classification. To this end, we propose a novel feature descriptor called Radon representation-based feature descriptor (RRFD). RRFD converts the original pixel represented images into Radon-pixel images by using the Radon transform. The new Radon-pixel representation is more informative in geometry and has a much lower dimension. Subsequently, RRFD efficiently achieves affine invariance by projecting an image (or an image patch) from the space of Radon-pixel pairs onto an invariant feature space by using a ratiogram, i.e., the histogram of ratios between the areas of triangle pairs. The illumination invariance is also achieved by defining an illumination invariant distance metric on the invariant feature space. Comparing to the existing Radon transform-based texture features, which only achieve rotation and/or scaling invariance, RRFD achieves affine invariance. The experimental results on CUReT show that RRFD is a powerful feature descriptor that is suitable for texture classification.

摘要

在本文中,我们旨在处理由几何变换和光照变化引起的类内变化,以实现更稳健的纹理分类。为此,我们提出了一种名为基于拉东表示的特征描述符(RRFD)的新型特征描述符。RRFD通过使用拉东变换将原始像素表示的图像转换为拉东像素图像。新的拉东像素表示在几何方面更具信息性且维度更低。随后,RRFD通过使用比率图,即三角形对面积之间比率的直方图,将图像(或图像块)从拉东像素对空间投影到不变特征空间,从而有效地实现仿射不变性。通过在不变特征空间上定义光照不变距离度量,也实现了光照不变性。与现有的仅实现旋转和/或缩放不变性的基于拉东变换的纹理特征相比,RRFD实现了仿射不变性。在CUReT上的实验结果表明,RRFD是一种适用于纹理分类的强大特征描述符。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验